On Normal $\tau$-Measurable Operators Affiliated with Semifinite Von Neumann Algebras
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 350-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\tau$ be a faithful normal semifinite trace on the von Neumann algebra $\mathcal{M}$, $1 \ge q >0$. The following generalizations of problems 163 and 139 from the book [1] to $\tau$-measurable operators are obtained; it is established that: 1) each $\tau$-compact $q$-hyponormal operator is normal; 2) if a $\tau$-measurable operator $A$ is normal and, for some natural number $n$, the operator $A^n$ is $\tau$-compact, then the operator $A$ is also $\tau$-compact. It is proved that if a $\tau$-measurable operator $A$ is hyponormal and the operator $A^2$ is $\tau$-compact, then the operator $A$ is also $\tau$-compact. A new property of a nonincreasing rearrangement of the product of hyponormal and cohyponormal $\tau$-measurable operators is established. For normal $\tau$-measurable operators $A$ and $B$, it is shown that the nonincreasing rearrangements of the operators $AB$ and $BA$ coincide. Applications of the results obtained to $F$-normed symmetric spaces on $(\mathcal{M},\tau)$ are considered.
Keywords: semifinite von Neumann algebra, faithful normal semifinite trace, $\tau$-measurable operator, hyponormal operator, cohyponormal operator, $\tau$-compact operator, nilpotent, $F$-normed symmetric space.
Mots-clés : quasinilpotent
@article{MZM_2014_96_3_a4,
     author = {A. M. Bikchentaev},
     title = {On {Normal} $\tau${-Measurable} {Operators} {Affiliated} with {Semifinite} {Von} {Neumann} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--360},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a4/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - On Normal $\tau$-Measurable Operators Affiliated with Semifinite Von Neumann Algebras
JO  - Matematičeskie zametki
PY  - 2014
SP  - 350
EP  - 360
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a4/
LA  - ru
ID  - MZM_2014_96_3_a4
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T On Normal $\tau$-Measurable Operators Affiliated with Semifinite Von Neumann Algebras
%J Matematičeskie zametki
%D 2014
%P 350-360
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a4/
%G ru
%F MZM_2014_96_3_a4
A. M. Bikchentaev. On Normal $\tau$-Measurable Operators Affiliated with Semifinite Von Neumann Algebras. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 350-360. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a4/

[1] P. Khalmosh, Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR

[2] V. I. Chilin, A. V. Krygin, F. A. Sukochev, “Extreme points of convex fully symmetric sets of measurable operators”, Integral Equations Operator Theory, 15:2 (1992), 186–226 | DOI | MR | Zbl

[3] I. E. Segal, “A non-commutative extension of abstract integration”, Ann. of Math. (2), 57:3 (1953), 401–457 ; Matematika. Cb. per., 6:1 (1962), 65–132 | DOI | MR | Zbl

[4] F. J. Yeadon, “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Philos. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl

[5] T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[6] A. M. Bikchentaev, “On noncommutative function spaces”, Selected Papers in $K$-theory, Amer. Math. Soc. Transl. (2), 154, Amer. Math. Soc., Providence. RI, 1992, 179–187

[7] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[8] N. Burbaki, Spektralnaya teoriya, Elementy matematiki, Mir, M., 1972 | MR

[9] S. K. Berberian, “A note on hyponormal operators”, Pacific J. Math., 12:4 (1962), 1171–1175 | DOI | MR | Zbl

[10] F. Kittaneh, “On the normality of operator products”, Linear and Multilinear Algebra, 30:1-2 (1991), 1–4 | DOI | MR | Zbl

[11] F. A. Sukochev, “O gipoteze A. M. Bikchentaeva”, Izv. vuzov. Matem., 2012, no. 6, 67–70 | MR | Zbl

[12] V. I. Ovchinnikov, “Simmetrichnye prostranstva izmerimykh operatorov”, Dokl. AN SSSR, 191:4 (1970), 769–771 | Zbl

[13] A. M. Bikchentaev, “Ob odnom svoistve $L_p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Matem. zametki, 64:2 (1998), 185–190 | DOI | MR | Zbl

[14] Yu. I. Lyubich, “Lineinyi funktsionalnyi analiz”, Funktsionalnyi analiz – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 19, VINITI, M., 1988, 5–305 | MR | Zbl

[15] P. Y. Wu, “The operator factorization problems”, Linear Algebra Appl., 117:1 (1989), 35–63 | MR | Zbl