On Normal $\tau$-Measurable Operators Affiliated with Semifinite Von Neumann Algebras
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 350-360

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\tau$ be a faithful normal semifinite trace on the von Neumann algebra $\mathcal{M}$, $1 \ge q >0$. The following generalizations of problems 163 and 139 from the book [1] to $\tau$-measurable operators are obtained; it is established that: 1) each $\tau$-compact $q$-hyponormal operator is normal; 2) if a $\tau$-measurable operator $A$ is normal and, for some natural number $n$, the operator $A^n$ is $\tau$-compact, then the operator $A$ is also $\tau$-compact. It is proved that if a $\tau$-measurable operator $A$ is hyponormal and the operator $A^2$ is $\tau$-compact, then the operator $A$ is also $\tau$-compact. A new property of a nonincreasing rearrangement of the product of hyponormal and cohyponormal $\tau$-measurable operators is established. For normal $\tau$-measurable operators $A$ and $B$, it is shown that the nonincreasing rearrangements of the operators $AB$ and $BA$ coincide. Applications of the results obtained to $F$-normed symmetric spaces on $(\mathcal{M},\tau)$ are considered.
Keywords: semifinite von Neumann algebra, faithful normal semifinite trace, $\tau$-measurable operator, hyponormal operator, cohyponormal operator, $\tau$-compact operator, nilpotent, $F$-normed symmetric space.
Mots-clés : quasinilpotent
@article{MZM_2014_96_3_a4,
     author = {A. M. Bikchentaev},
     title = {On {Normal} $\tau${-Measurable} {Operators} {Affiliated} with {Semifinite} {Von} {Neumann} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--360},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a4/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - On Normal $\tau$-Measurable Operators Affiliated with Semifinite Von Neumann Algebras
JO  - Matematičeskie zametki
PY  - 2014
SP  - 350
EP  - 360
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a4/
LA  - ru
ID  - MZM_2014_96_3_a4
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T On Normal $\tau$-Measurable Operators Affiliated with Semifinite Von Neumann Algebras
%J Matematičeskie zametki
%D 2014
%P 350-360
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a4/
%G ru
%F MZM_2014_96_3_a4
A. M. Bikchentaev. On Normal $\tau$-Measurable Operators Affiliated with Semifinite Von Neumann Algebras. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 350-360. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a4/