Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_3_a2, author = {Yu. I. Beloglazov and A. V. Dmitruk}, title = {On the {Uniform} {Convergence} of {Solutions} of {Volterra-Type} {Controlled} {Systems} of {Integral} {Equations} {Linear} in the {Control}}, journal = {Matemati\v{c}eskie zametki}, pages = {333--342}, publisher = {mathdoc}, volume = {96}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a2/} }
TY - JOUR AU - Yu. I. Beloglazov AU - A. V. Dmitruk TI - On the Uniform Convergence of Solutions of Volterra-Type Controlled Systems of Integral Equations Linear in the Control JO - Matematičeskie zametki PY - 2014 SP - 333 EP - 342 VL - 96 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a2/ LA - ru ID - MZM_2014_96_3_a2 ER -
%0 Journal Article %A Yu. I. Beloglazov %A A. V. Dmitruk %T On the Uniform Convergence of Solutions of Volterra-Type Controlled Systems of Integral Equations Linear in the Control %J Matematičeskie zametki %D 2014 %P 333-342 %V 96 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a2/ %G ru %F MZM_2014_96_3_a2
Yu. I. Beloglazov; A. V. Dmitruk. On the Uniform Convergence of Solutions of Volterra-Type Controlled Systems of Integral Equations Linear in the Control. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 333-342. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a2/
[1] W. Liu, H. J. Sussmann, “Continuous dependence with respect to the input of trajectories of control-affine systems”, SIAM J. Control Optim., 37:3 (1999), 777–803 | DOI | MR | Zbl
[2] W. Liu, H. J. Sussmann, “Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories”, Proceedings of the 30th IEEE Conference on Decision and Control, Vol. 1 (11–13 Dec 1991, Brighton), 1991, 437–442 | DOI
[3] Z. Artstein, “Continuous dependence of solutions of Volterra integral equations”, SIAM J. Math. Anal., 6:3 (1975), 446–456 | DOI | MR | Zbl
[4] J. Kurzweil, J. Jarník, “Limit processes in ordinary differential equations”, Z. Angew. Math. Phys., 38:2 (1987), 241–256 | DOI | MR | Zbl
[5] G. Buttazzo, G. Dal Maso, “$\Gamma$-convergence and optimal control problems”, J. Optim. Theory Appl., 38:3 (1982), 385–407 | DOI | MR | Zbl
[6] A. V. Dmitruk, A. A. Milyutin, N. P. Osmolovskii, “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl