Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 450-469

Voir la notice de l'article provenant de la source Math-Net.Ru

Projective module tensor products and spaces of multipliers (i.e., bounded module morphisms) of the spaces $L_p(\mu)$ and $L_q(\nu)$ regarded as modules over the algebras $C_0(\Omega)$ and $B(\Omega)$ on a locally compact space $\Omega$ are described. Here $B(\Omega)$ consists of bounded Borel functions on $\Omega$, $\mu$ and $\nu$ are regular Borel measures on $\Omega$, $1\le p,q\le\infty$ in the case of the base algebra $B(\Omega)$, and $1\le p,q\infty$ in the case of the base algebra $C_0(\Omega)$. (Loosely speaking, both the tensor product and the space of multipliers turn out to be yet other modules, which consist of integrable functions and correspond to their own subscripts on $L$ and measures). It is proved and used as an auxiliary tool that, in the case $p,q\infty$ (and, generally, only in this case), the replacement of the base algebra $C_0(\Omega)$ by $B(\Omega)$ leaves the tensor products and multipliers intact.
Keywords: Banach module, module of class $L_p$, measure space, tensor product, algebra of bounded Borel functions
Mots-clés : space of multipliers, outer product.
@article{MZM_2014_96_3_a13,
     author = {A. Ya. Khelemskii},
     title = {Tensor {Products} and {Multipliers} of {Modules} $L_p$ on {Locally} {Compact} {Measure} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {450--469},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a13/}
}
TY  - JOUR
AU  - A. Ya. Khelemskii
TI  - Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces
JO  - Matematičeskie zametki
PY  - 2014
SP  - 450
EP  - 469
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a13/
LA  - ru
ID  - MZM_2014_96_3_a13
ER  - 
%0 Journal Article
%A A. Ya. Khelemskii
%T Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces
%J Matematičeskie zametki
%D 2014
%P 450-469
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a13/
%G ru
%F MZM_2014_96_3_a13
A. Ya. Khelemskii. Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 450-469. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a13/