Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 450-469.

Voir la notice de l'article provenant de la source Math-Net.Ru

Projective module tensor products and spaces of multipliers (i.e., bounded module morphisms) of the spaces $L_p(\mu)$ and $L_q(\nu)$ regarded as modules over the algebras $C_0(\Omega)$ and $B(\Omega)$ on a locally compact space $\Omega$ are described. Here $B(\Omega)$ consists of bounded Borel functions on $\Omega$, $\mu$ and $\nu$ are regular Borel measures on $\Omega$, $1\le p,q\le\infty$ in the case of the base algebra $B(\Omega)$, and $1\le p,q\infty$ in the case of the base algebra $C_0(\Omega)$. (Loosely speaking, both the tensor product and the space of multipliers turn out to be yet other modules, which consist of integrable functions and correspond to their own subscripts on $L$ and measures). It is proved and used as an auxiliary tool that, in the case $p,q\infty$ (and, generally, only in this case), the replacement of the base algebra $C_0(\Omega)$ by $B(\Omega)$ leaves the tensor products and multipliers intact.
Keywords: Banach module, module of class $L_p$, measure space, tensor product, algebra of bounded Borel functions
Mots-clés : space of multipliers, outer product.
@article{MZM_2014_96_3_a13,
     author = {A. Ya. Khelemskii},
     title = {Tensor {Products} and {Multipliers} of {Modules} $L_p$ on {Locally} {Compact} {Measure} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {450--469},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a13/}
}
TY  - JOUR
AU  - A. Ya. Khelemskii
TI  - Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces
JO  - Matematičeskie zametki
PY  - 2014
SP  - 450
EP  - 469
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a13/
LA  - ru
ID  - MZM_2014_96_3_a13
ER  - 
%0 Journal Article
%A A. Ya. Khelemskii
%T Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces
%J Matematičeskie zametki
%D 2014
%P 450-469
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a13/
%G ru
%F MZM_2014_96_3_a13
A. Ya. Khelemskii. Tensor Products and Multipliers of Modules $L_p$ on Locally Compact Measure Spaces. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 450-469. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a13/

[1] A. Ya. Khelemskii, “Metricheskaya svoboda i proektivnost dlya klassicheskikh i kvantovykh normirovannykh modulei”, Matem. sb., 204:7 (2013), 127–158 | DOI | MR | Zbl

[2] A. Ya. Helemskii, “Extreme flatness of normed modules and Arveson–Wittstock type theorems”, J. Operator Theory, 64:1 (2010), 171–188 | MR | Zbl

[3] A. Ya. Helemskii, “Extreme version of projectivity for normed modules over sequence algebras”, Canad. J. Math., 65:3 (2013), 559–574 | MR | Zbl

[4] M. A. Rieffel, “Induced Banach representations of Banach algebras and locally compact groups”, J. Funct. Anal., 1 (1967), 443–491 | DOI | MR | Zbl

[5] M. A. Rieffel, “Multipliers and tensor products of $L^p$-spaces of locally compact groups”, Studia Math., 33 (1969), 71–82 | MR | Zbl

[6] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004

[7] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR

[8] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. (N.S.), 24, Clarendon Press, Oxford, 2000 | MR | Zbl

[9] V. I. Bogachev, Osnovy teorii mery, T. 1, RKhD, M.–Izhevsk, 2006

[10] N. Burbaki, Integrirovanie. Mery, integrirovanie mer, Elementy matematiki, Nauka, M., 1967 | MR

[11] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962 | MR | Zbl