On the Asymmetry of Multiple Asymptotic Properties of Ergodic Actions
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 432-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a mixing $\mathbb Z^2$-action, not isomorphic to its inverse, is presented; $\mathbb Z$-actions with asymmetry of partial multiple mixing properties on sequences and partial multiple rigidity are considered; new examples of transformations of a space with infinite measure, not isomorphic to its inverse, are given.
Keywords: mixing $\mathbb Z^2$-action, asymmetry of multiple mixing, partial multiple rigidity, Haar measure, compact commutative group.
Mots-clés : ergodic invertible transformation
@article{MZM_2014_96_3_a11,
     author = {V. V. Ryzhikov},
     title = {On the {Asymmetry} of {Multiple} {Asymptotic} {Properties} of {Ergodic} {Actions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {432--439},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a11/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - On the Asymmetry of Multiple Asymptotic Properties of Ergodic Actions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 432
EP  - 439
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a11/
LA  - ru
ID  - MZM_2014_96_3_a11
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T On the Asymmetry of Multiple Asymptotic Properties of Ergodic Actions
%J Matematičeskie zametki
%D 2014
%P 432-439
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a11/
%G ru
%F MZM_2014_96_3_a11
V. V. Ryzhikov. On the Asymmetry of Multiple Asymptotic Properties of Ergodic Actions. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 432-439. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a11/

[1] V. A. Rokhlin, “Ob endomorfizmakh kompaktnykh kommutativnykh grupp”, Izv. AN SSSR. Ser. matem., 13:4 (1949), 329–340 | MR | Zbl

[2] F. Ledrappier, “Un champ markovien peut être d'entropie null et mélangeant”, C. R. Acad. Sci. Paris Ser. A, 287:7 (1978), 561–563 | MR | Zbl

[3] O. N. Ageev, “Deistviya avtomorfizmami kommutativnykh kompaktnykh grupp so schetnokratnoi lebegovskoi komponentoi v spektre”, Matem. zametki, 49:2 (1991), 14–22 | MR | Zbl

[4] V. V. Ryzhikov, “Ob asimmetrii kaskadov”, Dinamicheskie sistemy i smezhnye voprosy, Tr. MIAN, 216, Nauka, M., 1997, 154–157 | MR | Zbl

[5] V. V. Ryzhikov, “Chastichnoe kratnoe peremeshivanie na podposledovatelnostyakh mozhet razlichat avtomorfizmy $T$ i $T^{-1}$”, Matem. zametki, 74:6 (2003), 889–895 | DOI | MR | Zbl

[6] I. S. Yaroslavtsev, “Ob asimmetrii proshlogo i buduschego ergodicheskogo $\mathbb{Z}$-deistviya”, Matem. zametki, 95:3 (2014), 479–480 | DOI

[7] V. V. Ryzhikov, “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl

[8] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl

[9] A. I. Danilenko, V. V. Ryzhikov, “On self-similarities of ergodic flows”, Proc. London Math. Soc. (3), 104:3 (2012), 431–454 | DOI | MR | Zbl

[10] K. Fra̧czek, J. Kułaga-Przymus, M. Lemańczyk, “Non-reversibility and self-joinings of higher orders for ergodic flows”, J. Anal. Math., 122 (2014), 163–227 | MR

[11] V. V. Ryzhikov, “Ogranichennye ergodicheskie konstruktsii, diz'yunktnost i slabye predely stepenei”, Tr. MMO, 74, no. 1, MTsNMO, M., 2013, 201–208

[12] S. V. Tikhonov, “Approksimatsiya peremeshivayuschikh preobrazovanii”, Matem. zametki, 95:2 (2014), 282–299 | DOI