A Note on the Upper Bound for Disjoint Convex Partitions
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 285-293

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n(k,l,m)$, $k\le l\le m$, be the smallest integer such that any finite planar point set which has at least $n(k,l,m)$ points in general position, contains an empty convex $k$-hole, an empty convex $l$-hole and an empty convex $m$-hole, in which the three holes are pairwise disjoint. In this article, we prove that $n(4,4,5)\le 16$.
Keywords: finite planar point set, convex hull, general position, disjoint hole.
Mots-clés : convex partition
@article{MZM_2014_96_2_a12,
     author = {Xinshang You and Xiang Lin Wei},
     title = {A {Note} on the {Upper} {Bound} for {Disjoint} {Convex} {Partitions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--293},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a12/}
}
TY  - JOUR
AU  - Xinshang You
AU  - Xiang Lin Wei
TI  - A Note on the Upper Bound for Disjoint Convex Partitions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 285
EP  - 293
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a12/
LA  - ru
ID  - MZM_2014_96_2_a12
ER  - 
%0 Journal Article
%A Xinshang You
%A Xiang Lin Wei
%T A Note on the Upper Bound for Disjoint Convex Partitions
%J Matematičeskie zametki
%D 2014
%P 285-293
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a12/
%G ru
%F MZM_2014_96_2_a12
Xinshang You; Xiang Lin Wei. A Note on the Upper Bound for Disjoint Convex Partitions. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 285-293. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a12/