A Note on the Upper Bound for Disjoint Convex Partitions
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 285-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n(k,l,m)$, $k\le l\le m$, be the smallest integer such that any finite planar point set which has at least $n(k,l,m)$ points in general position, contains an empty convex $k$-hole, an empty convex $l$-hole and an empty convex $m$-hole, in which the three holes are pairwise disjoint. In this article, we prove that $n(4,4,5)\le 16$.
Keywords: finite planar point set, convex hull, general position, disjoint hole.
Mots-clés : convex partition
@article{MZM_2014_96_2_a12,
     author = {Xinshang You and Xiang Lin Wei},
     title = {A {Note} on the {Upper} {Bound} for {Disjoint} {Convex} {Partitions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--293},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a12/}
}
TY  - JOUR
AU  - Xinshang You
AU  - Xiang Lin Wei
TI  - A Note on the Upper Bound for Disjoint Convex Partitions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 285
EP  - 293
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a12/
LA  - ru
ID  - MZM_2014_96_2_a12
ER  - 
%0 Journal Article
%A Xinshang You
%A Xiang Lin Wei
%T A Note on the Upper Bound for Disjoint Convex Partitions
%J Matematičeskie zametki
%D 2014
%P 285-293
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a12/
%G ru
%F MZM_2014_96_2_a12
Xinshang You; Xiang Lin Wei. A Note on the Upper Bound for Disjoint Convex Partitions. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 285-293. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a12/

[1] P. Erdős, G. Szekeres, “A combinatorial problem in geometry”, Compositio Math., 2 (1935), 463–470 | MR | Zbl

[2] P. Erdős, G. Szekeres, “On some extremum problem in elementary geometry”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 3-4 (1960), 53–62 | MR

[3] J. D. Kalbfleisch, J. G. Kalbfleisch, R. G. Stanton, “A combinatorial problem on convex regions”, Proc. Louisiana Conf. on Combinatorics Graph Theory and Computering. Vol. 1. Congressus Numerantium, Louisiana State Univ., Baton Rouge, LA., Congr. Number., 1970, 180–188

[4] G. Szekeres, L. Peters, “Computer solution to the 17-point Erdős–Szekeres problem”, ANZIAM J., 48:2 (2006), 151–164 | DOI | MR | Zbl

[5] H. Harborth, “Konvexe Fünfecke in ebenen Punktmengen”, Elem. Math., 33:5 (1978), 116–118 | MR | Zbl

[6] J. D. Horton, “Sets with no empty convex 7-gons”, Canad. Math. Bull., 26:4 (1983), 482–484 | DOI | MR | Zbl

[7] T. Gerken, “Empty convex hexagons in planar point sets”, Discrete Comput. Geom., 39:1-3 (2008), 239–272 | DOI | MR | Zbl

[8] C. M. Nicolás, “The empty hexagon theorem”, Discrete Comput. Geom., 38:2 (2007), 389–397 | DOI | MR | Zbl

[9] M. Urabe, “On a partition into convex polygons”, Discrete Appl. Math., 64:2 (1996), 179–191 | DOI | MR | Zbl

[10] K. Hosono, M. Urabe, “A minimal planar point set with specified disjoint empty convex subsets”, Computational Geometry and Graph Theory, Lecture Notes in Comput. Sci., 4535, Springer-Verlag, Berlin, 2008, 90–100 | MR | Zbl

[11] K. Hosono, M. Urabe, “On the number of disjoint convex quadrilaterals for a planar point set”, Comput. Geom., 20:3 (2001), 97–104 | DOI | MR | Zbl

[12] K. Hosono, M. Urabe, “On the minimum size of a point set containing two non-intersecting empty convex polygons”, Discrete and Computational Geometry, Lecture Notes in Comput. Sci., 3742, Springer-Verlag, Berlin, 2005, 117–122 | MR | Zbl

[13] L. Wu, R. Ding, “Reconfirmation of two results on disjoint empty convex polygons”, Discrete Geometry, Combinatorics and Graph Theory, Lecture Notes in Comput. Sci., 4381, Springer-Verlag, Berlin, 2007, 216–220 | DOI | MR | Zbl

[14] B. B. Bhattacharya, S. Das, “On the minimum size of a point set containing a 5-hole and a disjoint 4-hole”, Studia Sci. Math. Hungar., 48:4 (2011), 445–457 | DOI | MR | Zbl

[15] B. B. Bhattacharya, S. Das, “Disjoint empty convex pentagons in planar point sets”, Period. Math. Hungar, 66:1 (2013), 73–86 | DOI | MR