A Note on the Upper Bound for Disjoint Convex Partitions
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 285-293
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $n(k,l,m)$, $k\le l\le m$, be the smallest integer such that any finite planar point set which has at least $n(k,l,m)$ points in general position, contains an empty convex $k$-hole, an empty convex $l$-hole and an empty convex $m$-hole, in which the three holes are pairwise disjoint. In this article, we prove that $n(4,4,5)\le 16$.
Keywords:
finite planar point set, convex hull, general position, disjoint hole.
Mots-clés : convex partition
Mots-clés : convex partition
@article{MZM_2014_96_2_a12,
author = {Xinshang You and Xiang Lin Wei},
title = {A {Note} on the {Upper} {Bound} for {Disjoint} {Convex} {Partitions}},
journal = {Matemati\v{c}eskie zametki},
pages = {285--293},
publisher = {mathdoc},
volume = {96},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a12/}
}
Xinshang You; Xiang Lin Wei. A Note on the Upper Bound for Disjoint Convex Partitions. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 285-293. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a12/