The Maslov Canonical Operator on Lagrangian Manifolds in the Phase Space Corresponding to a~Wave Equation Degenerating on the Boundary
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 261-276

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the Maslov canonical operator on Lagrangian manifolds in the phase space corresponding to the wave equation in a domain on whose boundary the wave propagation velocity $c(x)$ degenerates as the square root of the distance from the boundary.
Keywords: wave equation, boundary, degeneration, asymptotics, Maslov canonical operator, Lagrangian manifold.
@article{MZM_2014_96_2_a10,
     author = {V. E. Nazaikinskii},
     title = {The {Maslov} {Canonical} {Operator} on {Lagrangian} {Manifolds} in the {Phase} {Space} {Corresponding} to {a~Wave} {Equation} {Degenerating} on the {Boundary}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {261--276},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a10/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
TI  - The Maslov Canonical Operator on Lagrangian Manifolds in the Phase Space Corresponding to a~Wave Equation Degenerating on the Boundary
JO  - Matematičeskie zametki
PY  - 2014
SP  - 261
EP  - 276
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a10/
LA  - ru
ID  - MZM_2014_96_2_a10
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%T The Maslov Canonical Operator on Lagrangian Manifolds in the Phase Space Corresponding to a~Wave Equation Degenerating on the Boundary
%J Matematičeskie zametki
%D 2014
%P 261-276
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a10/
%G ru
%F MZM_2014_96_2_a10
V. E. Nazaikinskii. The Maslov Canonical Operator on Lagrangian Manifolds in the Phase Space Corresponding to a~Wave Equation Degenerating on the Boundary. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 261-276. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a10/