Solvability of the Boundary-Value Problem for Equations of One-Dimensional Motion of a Two-Phase Mixture
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 170-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the system of equations of one-dimensional nonstationary motion of a heat-conducting two-phase mixture (of gas and solid particles), the local solvability of the initial boundary value problem is proved. For the case in which the intrinsic densities of the phases are constant and the viscosity and the acceleration of the second phase are small, we establish the “global” (with respect to time) solvability and the convergence (as time increases unboundedly) of the solution of the nonstationary problem to the solution of the stationary one.
Keywords: two-phase mixture of gas and solid particles, nonstationary motion of a two-phase mixture, the maximum principle for concentration and intrinsic density, Reynolds number, Froude number.
@article{MZM_2014_96_2_a1,
     author = {I. G. Akhmerova and A. A. Papin},
     title = {Solvability of the {Boundary-Value} {Problem} for {Equations} of {One-Dimensional} {Motion} of a {Two-Phase} {Mixture}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {170--185},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a1/}
}
TY  - JOUR
AU  - I. G. Akhmerova
AU  - A. A. Papin
TI  - Solvability of the Boundary-Value Problem for Equations of One-Dimensional Motion of a Two-Phase Mixture
JO  - Matematičeskie zametki
PY  - 2014
SP  - 170
EP  - 185
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a1/
LA  - ru
ID  - MZM_2014_96_2_a1
ER  - 
%0 Journal Article
%A I. G. Akhmerova
%A A. A. Papin
%T Solvability of the Boundary-Value Problem for Equations of One-Dimensional Motion of a Two-Phase Mixture
%J Matematičeskie zametki
%D 2014
%P 170-185
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a1/
%G ru
%F MZM_2014_96_2_a1
I. G. Akhmerova; A. A. Papin. Solvability of the Boundary-Value Problem for Equations of One-Dimensional Motion of a Two-Phase Mixture. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 170-185. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a1/

[1] S. K. Gard, J. W. Pritchett, “Dynamics of gas-fluidized beds”, J. Appl. Phys., 46:10 (1975), 4493–4500 | DOI

[2] A. A. Papin, I. G. Akhmerova, “Razreshimost sistemy uravnenii odnomernogo dvizheniya teploprovodnoi dvukhfaznoi smesi”, Matem. zametki, 87:2 (2010), 246–261 | DOI | MR | Zbl

[3] M. Göz, “Existence and uniqueness of time-dependent spatially periodic solutions of fluidized bed equations”, Z. Angew. Math. Mech., 71:6 (1991), 750–751 | MR | Zbl

[4] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Izd-vo «Nauka», Sib. otd., Novosibirsk, 1983 | MR | Zbl

[5] Ya. I. Kanel, “Ob odnoi modelnoi sisteme uravnenii odnomernogo dvizheniya gaza”, Differen. uravneniya, 4:4 (1968), 721–734 | MR | Zbl

[6] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[7] I. G. Akhmerova, “Razreshimost kraevoi zadachi dlya uravnenii odnomernogo dvizheniya dvukhfaznoi smesi”, Zhurn. SFU. Ser. Matem. i fiz., 5:1 (2012), 25–35

[8] P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, Clarendon Press, Oxford, 1998