On the Residual Finiteness of Descending HNN-Extensions of Groups
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group of finite generic rank, $\varphi $ an injective endomorphism of the group $G$, and $G(\varphi)$ the descending HNN-extension of $G$ corresponding to the endomorphism $\varphi$. Let the index of the subgroup $G\varphi$ in $G$ be finite and equal to $n$. It is proved that, if the group $G$ is almost residually $\pi$-finite for some set $\pi$ of primes coprime to $n$, then the group $G(\varphi)$ is residually finite. This generalizes a series of known results, including the Wise–Hsu theorem on the residual finiteness of an arbitrary descending HNN-extension of any almost polycyclic group.
Keywords: residual finiteness, descending HNN-extension, almost residually $\pi$-finite group.
@article{MZM_2014_96_2_a0,
     author = {D. N. Azarov},
     title = {On the {Residual} {Finiteness} of {Descending} {HNN-Extensions} of {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a0/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - On the Residual Finiteness of Descending HNN-Extensions of Groups
JO  - Matematičeskie zametki
PY  - 2014
SP  - 163
EP  - 169
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a0/
LA  - ru
ID  - MZM_2014_96_2_a0
ER  - 
%0 Journal Article
%A D. N. Azarov
%T On the Residual Finiteness of Descending HNN-Extensions of Groups
%J Matematičeskie zametki
%D 2014
%P 163-169
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a0/
%G ru
%F MZM_2014_96_2_a0
D. N. Azarov. On the Residual Finiteness of Descending HNN-Extensions of Groups. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a0/

[1] D. I. Moldavanskii, “Finitnaya approksimiruemost niskhodyaschikh HNN-rasshirenii grupp”, Ukr. matem. zhurn., 44:6 (1992), 842–845 | MR | Zbl

[2] T. Hsu, D. T. Wise, “Ascending HNN-extensions of polycyclic groups are residually finite”, J. Pure Appl. Algebra, 182:1 (2003), 65–78 | DOI | MR | Zbl

[3] G. Baumslag, R. Bieri, “Constructable soluble groups”, Math. Z., 151:3 (1976), 249–257 | DOI | MR | Zbl

[4] J. Lennox, D. J. S. Robinson, The Theory of Infinite Soluble Groups, Oxford Math. Monogr., Clarendon press, Oxford, 2004 | MR | Zbl

[5] A. Borisov, M. Sapir, “Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms”, Invent. Math., 160:2 (2005), 341–356, arXiv: math.GR/0309121 | MR | Zbl

[6] A. H. Rhemtulla, M. Shirvani, “The residual finiteness of ascending HNN-extensions of certain soluble groups”, Illinois J. Math., 47:1-2 (2003), 477–484 | MR | Zbl

[7] A. L. Shmelkin, “Politsiklicheskie gruppy”, Sib. matem. zhurn., 9 (1968), 234–235 | MR

[8] A. Lubotzky, D. Segal, Subgroup Growth, Progr. Math., 212, Birkhäuser-verlag, Basel, 2003 | MR | Zbl

[9] K. W. Gruenberg, “Residual properties of infinite soluble groups”, Proc. London Math. Soc. (3), 7 (1957), 29–62 | DOI | MR | Zbl

[10] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl