Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_1_a7, author = {V. E. Nazaikinskii}, title = {On the {Representation} of {Localized} {Functions} in~$\mathbb R^2$ by {Maslov's} {Canonical} {Operator}}, journal = {Matemati\v{c}eskie zametki}, pages = {88--100}, publisher = {mathdoc}, volume = {96}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a7/} }
TY - JOUR AU - V. E. Nazaikinskii TI - On the Representation of Localized Functions in~$\mathbb R^2$ by Maslov's Canonical Operator JO - Matematičeskie zametki PY - 2014 SP - 88 EP - 100 VL - 96 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a7/ LA - ru ID - MZM_2014_96_1_a7 ER -
V. E. Nazaikinskii. On the Representation of Localized Functions in~$\mathbb R^2$ by Maslov's Canonical Operator. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 88-100. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a7/
[1] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[2] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, “Predstavleniya bystroubyvayuschikh funktsii kanonicheskim operatorom Maslova”, Matem. zametki, 82:5 (2007), 792–796 | DOI | MR | Zbl
[3] S. Yu. Dobrokhotov, P. N. Zhevandrov, V. P. Maslov, A. I. Shafarevich, “Asimptoticheskie bystroubyvayuschie resheniya lineinykh strogo giperbolicheskikh sistem s peremennymi koeffitsientami”, Matem. zametki, 49:4 (1991), 31–46 | MR | Zbl
[4] S. Dobrokhotov, S. Sekerzh-Zenkovich, B. Tirozzi, T. Tudorovski, “Asymptotic theory of tsunami waves: geometrical aspects and the generalized Maslov representation”, Publications of the Research Institute for Mathematical Sciences, 4:1482 (2006), 118–153
[5] S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zenkovich, B. Tirotstsi, T. Ya. Tudorovskii, “Opisanie rasprostraneniya voln tsunami na osnove kanonicheskogo operatora Maslova”, Dokl. RAN, 409:2 (2006), 171–175 | MR
[6] S. Dobrokhotov, S. Sekerzh-Zenkovich, B. Tirozzi, B. Volkov, “Explicit asymptotics for tsunami waves in framework of the piston model”, Russ. J. Earth Sci., 8 (2006), ES4003 | DOI
[7] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions of linear hyperbolic systems and their application to the linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl
[8] S. Yu. Dobrokhotov, B. Tirozzi, C. A. Vargas, “Behavior near the focal points of asymptotic solutions to the Cauchy problem for the linearized shallow water equations with initial localized perturbations”, Russ. J. Math. Phys., 16:2 (2009), 228–245 | DOI | MR | Zbl
[9] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Biblioteka matematika, 1, Fazis, M., 1996 | MR
[10] S. Yu. Dobrokhotov, G. N.Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI
[11] S. Yu. Dobrokhotov, S. O. Sinitsyn, B. Tirozzi, “Asymptotics of localized solutions of the one-dimensional wave equation with variable velocity. I. The Cauchy problem”, Russ. J. Math. Phys., 14:1 (2007), 28–56 | DOI | MR | Zbl
[12] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, “Asimptoticheskie resheniya dvumernogo modelnogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i lokalizovannymi nachalnymi dannymi”, Algebra i analiz, 22:6 (2010), 67–90 | MR | Zbl
[13] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data”, Russ. J. Math. Phys, 20:4 (2013), 389–401 | DOI | MR
[14] L. Hörmander, “Fourier integral operators. I”, Acta Math., 127 (1971), 79–183 | DOI | MR | Zbl
[15] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR
[16] S. F. Dotsenko, B. Yu. Sergievskii, L. V. Cherkasov, “Prostranstvennye volny tsunami, vyzvannye znakoperemennym smescheniem poverkhnosti okeana”, Issledovaniya tsunami, 1986, no. 1, 7–14
[17] S. Wang, “The propagation of the leading wave”, Coastal Hydrodynamics, ASCE Specialty Conference on Coastal Hydrodynamics (June 28–July 1, University of Delaware), American Society of Civil Engineers, New York, NY, 1987, 657–670
[18] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996
[19] S. Ya. Sekerzh-Zenkovich,, “Simple asymptotic solution to the Cauchy–Poisson problem for leading waves”, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR | Zbl
[20] S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zenkovich, “Odin klass tochnykh algebraicheskikh lokalizovannykh reshenii mnogomernogo volnovogo uravneniya”, Matem. zametki, 88:6 (2010), 942–945 | DOI | MR | Zbl