On the Representation of Localized Functions in~$\mathbb R^2$ by Maslov's Canonical Operator
Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 88-100
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that localized functions can be represented in the form of an integral over a parameter, the integrand being Maslov's canonical operator applied to an amplitude obtained from the Fourier transform of the function to be represented. This representation generalizes an earlier one obtained by Dobrokhotov, Tirozzi, and Shafarevich and permits representing localized initial data for wave type equations with the use of an invariant Lagrangian manifold, which simplifies the asymptotic solution formulas dramatically in many cases.
Keywords:
wave equation, asymptotics, localized initial data, integral representation, invariant Lagrangian manifold, Maslov's canonical operator.
@article{MZM_2014_96_1_a7,
author = {V. E. Nazaikinskii},
title = {On the {Representation} of {Localized} {Functions} in~$\mathbb R^2$ by {Maslov's} {Canonical} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {88--100},
publisher = {mathdoc},
volume = {96},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a7/}
}
TY - JOUR AU - V. E. Nazaikinskii TI - On the Representation of Localized Functions in~$\mathbb R^2$ by Maslov's Canonical Operator JO - Matematičeskie zametki PY - 2014 SP - 88 EP - 100 VL - 96 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a7/ LA - ru ID - MZM_2014_96_1_a7 ER -
V. E. Nazaikinskii. On the Representation of Localized Functions in~$\mathbb R^2$ by Maslov's Canonical Operator. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 88-100. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a7/