Associative $n$-Tuple Algebras
Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 36-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study algebras having $n$ bilinear multiplication operations $\boxed{s}\colon A\times A\to A$, $s=1,\dots,n$, such that $(a\mathbin{\boxed{s}}b)\mathbin{\boxed{r}}c= a\mathbin{\boxed{s}}(b\mathbin{\boxed{r}}c)$, $s,r=1,\dots,n$, $a,b,c\in A$. The radical of such an algebra is defined as the intersection of the annihilators of irreducible $A$-modules, and it is proved that the radical coincides with the intersection of the maximal right ideals each of which is $s$-regular for some operation $\boxed{s}$ . This implies that the quotient algebra by the radical is semisimple. If an $n$-tuple algebra is Artinian, then the radical is nilpotent, and the semisimple Artinian $n$-tuple algebra is the direct sum of two-sided ideals each of which is a simple algebra. Moreover, in terms of sandwich algebras, we describe a finite-dimensional $n$-tuple algebra $A$, over an algebraically closed field, which is a simple $A$-module.
Keywords: $n$-tuple algebra, radical, semisimple algebra, Artinian algebra, sandwich algebra, commutator algebra.
@article{MZM_2014_96_1_a3,
     author = {N. A. Koreshkov},
     title = {Associative $n${-Tuple} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {36--50},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a3/}
}
TY  - JOUR
AU  - N. A. Koreshkov
TI  - Associative $n$-Tuple Algebras
JO  - Matematičeskie zametki
PY  - 2014
SP  - 36
EP  - 50
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a3/
LA  - ru
ID  - MZM_2014_96_1_a3
ER  - 
%0 Journal Article
%A N. A. Koreshkov
%T Associative $n$-Tuple Algebras
%J Matematičeskie zametki
%D 2014
%P 36-50
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a3/
%G ru
%F MZM_2014_96_1_a3
N. A. Koreshkov. Associative $n$-Tuple Algebras. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 36-50. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a3/

[1] N. A. Koreshkov, “$n$-kratnye algebry assotsiativnogo tipa”, Izv. vuzov. Matem., 2008, no. 12, 34–42 | MR | Zbl

[2] N. A. Koreshkov, “O nilpotentnosti i razlozhenii algebr assotsiativnogo tipa”, Izv. vuzov. Matem., 2006, no. 9, 34–42 | MR

[3] N. A. Koreshkov, “Ob odnom klasse algebr assotsiativnogo tipa”, Izv. vuzov. Matem., 2007, no. 3, 38–46 | MR | Zbl

[4] V. V. Dotsenko, A. S. Khoroshkin, “Formuly kharaktera operady pary soglasovannykh skobok i bigamiltonovoi operady”, Funkts. analiz i ego pril., 41:1 (2007), 1–22 | DOI | MR | Zbl

[5] N. A. Koreshkov, “O nilpotentnosti $n$-kratnykh algebr Li i assotsiativnykh $n$-kratnykh algebr”, Izv. vuzov. Matem., 2010, no. 2, 33–38 | MR | Zbl

[6] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR