Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_1_a1, author = {V. M. Bruk}, title = {On {Linear} {Relations} {Generated} by an {Integro-Differential} {Equation} with {Nevanlinna} {Measure} in the {Infinite-Dimensional} {Case}}, journal = {Matemati\v{c}eskie zametki}, pages = {5--21}, publisher = {mathdoc}, volume = {96}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/} }
TY - JOUR AU - V. M. Bruk TI - On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case JO - Matematičeskie zametki PY - 2014 SP - 5 EP - 21 VL - 96 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/ LA - ru ID - MZM_2014_96_1_a1 ER -
%0 Journal Article %A V. M. Bruk %T On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case %J Matematičeskie zametki %D 2014 %P 5-21 %V 96 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/ %G ru %F MZM_2014_96_1_a1
V. M. Bruk. On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/
[1] V. M. Bruk, “O lineinykh otnosheniyakh, porozhdennykh integralnym uravneniem s nevanlinnovskoi meroi”, Izv. vuzov. Matem., 2012, no. 10, 3–19 | MR | Zbl
[2] V. M. Bruk, “Ob obratimykh lineinykh otnosheniyakh, porozhdennykh integralnym uravneniem s nevanlinnovskoi meroi”, Izv. vuzov. Matem., 2013, no. 2, 16–29 | Zbl
[3] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl
[4] F. S. Rofe-Beketov, “Square-Integrable Solutions, Self-Adjoint Extensions and Spectrum of Differential Systems”, Differential Equations, Sympos. Univ. Upsaliensis Ann. Quingentesimum Celebrantis, 7, Almqvist Wiksell, Stockholm, 1977, 169–178 | MR | Zbl
[5] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR
[6] F. S. Rofe-Beketov, A. M. Khol'kin, Spectral Analysis of Differential Operators. Interplay between Spectral and Oscillatory Properties, World Sci. Monogr. Ser. Math., 7, World Sci. Publ., Hackensack, NJ, 2005 | MR | Zbl
[7] A. G. Baskakov, K. I. Chernyshev, “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | DOI | MR | Zbl
[8] A. G. Baskakov, “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Funktsionalnyi analiz, SMFN, 9, MAI, M., 2004, 3–151 | MR | Zbl
[9] A. G. Baskakov, “Lineinye otnosheniya kak generatory polugrupp operatorov”, Matem. zametki, 84:2 (2008), 175–192 | DOI | MR | Zbl
[10] A. G. Baskakov, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | DOI | MR | Zbl
[11] A. G. Baskakov, “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1 (2013), 77–128 | DOI | MR | Zbl
[12] M. S. Bichegkuev, “Ob usloviyakh obratimosti raznostnykh i differentsialnykh operatorov v vesovykh prostranstvakh”, Izv. RAN. Ser. matem., 75:4 (2011), 3–20 | DOI | MR | Zbl
[13] V. B. Didenko, “O nepreryvnoi obratimosti i fredgolmovosti differentsialnykh operatorov s mnogoznachnymi impulsnymi vozdeistviyami”, Izv. RAN. Ser. matem., 77:1 (2013), 5–22 | DOI | MR | Zbl
[14] V. I. Khrabustovsky, “On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. I. General case”, Zhurn. matem. fiz., anal., geom., 2:2 (2006), 149–175 | MR | Zbl
[15] V. M. Bruk, “On linear relations generated by a differential expression and by a Nevanlinna operator function”, Zhurn. matem. fiz., anal., geom., 7:2 (2011), 115–140 | MR | Zbl
[16] Yu. V. Pokornyi, M. B. Zvereva, S. A. Shabrov, “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, UMN, 63:1 (2008), 111–154 | DOI | MR | Zbl
[17] I. S. Kats, M. G. Krein, “O spektralnykh funktsiyakh struny”, Dopolnenie 2: F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 648–737 | MR
[18] L. P. Klotz, H. Langer, “Generalized Resolvents and Spectral Functions of a Matrix Generalization of the Krein–Feller Second Order Derivative”, Math. Nachr., 100 (1981), 163–186 | DOI | MR | Zbl
[19] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR
[20] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[21] V. M. Bruk, “On linear relations generated by nonnegative operator function and degenerate elliptic differential-operator expression”, Zhurn. matem. fiz., anal., geom., 5:2 (2009), 123–144 | MR | Zbl
[22] A. V. Shtraus, “Obobschennye rezolventy simmetricheskikh operatorov”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 51–86 | MR | Zbl
[23] A. Dijksma, H. S. V. de Snoo, “Self-adjoint extensions of symmetric subspaces”, Pacific J. Math., 54:1 (1974), 71–100 | DOI | MR | Zbl
[24] A. N. Vernik, D. Z. Ilyazova, “Obobschennye rezolventy i spektralnye funktsii beskonechnomernogo analoga operatora differentsirovaniya Kreina–Fellera”, Izv. vuzov. Matem., 1986, no. 4, 20–26 | MR | Zbl