On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case
Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 5-21

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of integral equations that can be reduced to an integro-differential equation with Nevanlinna measure is considered. The families of maximal and minimal linear relations are defined and their holomorphy is established. It is proved that the operators inverse to continuously invertible restrictions of the maximal relations are integral.
Keywords: integro-differential equation, Nevanlinna measure, maximal (minimal) linear relation, holomorphy, separable Hilbert space, Krein–Feller differential operation
Mots-clés : Lebesgue–Stieltjes integral.
@article{MZM_2014_96_1_a1,
     author = {V. M. Bruk},
     title = {On {Linear} {Relations} {Generated} by an {Integro-Differential} {Equation} with {Nevanlinna} {Measure} in the {Infinite-Dimensional} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/}
}
TY  - JOUR
AU  - V. M. Bruk
TI  - On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case
JO  - Matematičeskie zametki
PY  - 2014
SP  - 5
EP  - 21
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/
LA  - ru
ID  - MZM_2014_96_1_a1
ER  - 
%0 Journal Article
%A V. M. Bruk
%T On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case
%J Matematičeskie zametki
%D 2014
%P 5-21
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/
%G ru
%F MZM_2014_96_1_a1
V. M. Bruk. On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/