On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case
Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 5-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of integral equations that can be reduced to an integro-differential equation with Nevanlinna measure is considered. The families of maximal and minimal linear relations are defined and their holomorphy is established. It is proved that the operators inverse to continuously invertible restrictions of the maximal relations are integral.
Keywords: integro-differential equation, Nevanlinna measure, maximal (minimal) linear relation, holomorphy, separable Hilbert space, Krein–Feller differential operation
Mots-clés : Lebesgue–Stieltjes integral.
@article{MZM_2014_96_1_a1,
     author = {V. M. Bruk},
     title = {On {Linear} {Relations} {Generated} by an {Integro-Differential} {Equation} with {Nevanlinna} {Measure} in the {Infinite-Dimensional} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/}
}
TY  - JOUR
AU  - V. M. Bruk
TI  - On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case
JO  - Matematičeskie zametki
PY  - 2014
SP  - 5
EP  - 21
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/
LA  - ru
ID  - MZM_2014_96_1_a1
ER  - 
%0 Journal Article
%A V. M. Bruk
%T On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case
%J Matematičeskie zametki
%D 2014
%P 5-21
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/
%G ru
%F MZM_2014_96_1_a1
V. M. Bruk. On Linear Relations Generated by an Integro-Differential Equation with Nevanlinna Measure in the Infinite-Dimensional Case. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a1/

[1] V. M. Bruk, “O lineinykh otnosheniyakh, porozhdennykh integralnym uravneniem s nevanlinnovskoi meroi”, Izv. vuzov. Matem., 2012, no. 10, 3–19 | MR | Zbl

[2] V. M. Bruk, “Ob obratimykh lineinykh otnosheniyakh, porozhdennykh integralnym uravneniem s nevanlinnovskoi meroi”, Izv. vuzov. Matem., 2013, no. 2, 16–29 | Zbl

[3] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[4] F. S. Rofe-Beketov, “Square-Integrable Solutions, Self-Adjoint Extensions and Spectrum of Differential Systems”, Differential Equations, Sympos. Univ. Upsaliensis Ann. Quingentesimum Celebrantis, 7, Almqvist Wiksell, Stockholm, 1977, 169–178 | MR | Zbl

[5] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR

[6] F. S. Rofe-Beketov, A. M. Khol'kin, Spectral Analysis of Differential Operators. Interplay between Spectral and Oscillatory Properties, World Sci. Monogr. Ser. Math., 7, World Sci. Publ., Hackensack, NJ, 2005 | MR | Zbl

[7] A. G. Baskakov, K. I. Chernyshev, “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | DOI | MR | Zbl

[8] A. G. Baskakov, “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Funktsionalnyi analiz, SMFN, 9, MAI, M., 2004, 3–151 | MR | Zbl

[9] A. G. Baskakov, “Lineinye otnosheniya kak generatory polugrupp operatorov”, Matem. zametki, 84:2 (2008), 175–192 | DOI | MR | Zbl

[10] A. G. Baskakov, “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | DOI | MR | Zbl

[11] A. G. Baskakov, “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1 (2013), 77–128 | DOI | MR | Zbl

[12] M. S. Bichegkuev, “Ob usloviyakh obratimosti raznostnykh i differentsialnykh operatorov v vesovykh prostranstvakh”, Izv. RAN. Ser. matem., 75:4 (2011), 3–20 | DOI | MR | Zbl

[13] V. B. Didenko, “O nepreryvnoi obratimosti i fredgolmovosti differentsialnykh operatorov s mnogoznachnymi impulsnymi vozdeistviyami”, Izv. RAN. Ser. matem., 77:1 (2013), 5–22 | DOI | MR | Zbl

[14] V. I. Khrabustovsky, “On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. I. General case”, Zhurn. matem. fiz., anal., geom., 2:2 (2006), 149–175 | MR | Zbl

[15] V. M. Bruk, “On linear relations generated by a differential expression and by a Nevanlinna operator function”, Zhurn. matem. fiz., anal., geom., 7:2 (2011), 115–140 | MR | Zbl

[16] Yu. V. Pokornyi, M. B. Zvereva, S. A. Shabrov, “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, UMN, 63:1 (2008), 111–154 | DOI | MR | Zbl

[17] I. S. Kats, M. G. Krein, “O spektralnykh funktsiyakh struny”, Dopolnenie 2: F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 648–737 | MR

[18] L. P. Klotz, H. Langer, “Generalized Resolvents and Spectral Functions of a Matrix Generalization of the Krein–Feller Second Order Derivative”, Math. Nachr., 100 (1981), 163–186 | DOI | MR | Zbl

[19] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[20] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[21] V. M. Bruk, “On linear relations generated by nonnegative operator function and degenerate elliptic differential-operator expression”, Zhurn. matem. fiz., anal., geom., 5:2 (2009), 123–144 | MR | Zbl

[22] A. V. Shtraus, “Obobschennye rezolventy simmetricheskikh operatorov”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 51–86 | MR | Zbl

[23] A. Dijksma, H. S. V. de Snoo, “Self-adjoint extensions of symmetric subspaces”, Pacific J. Math., 54:1 (1974), 71–100 | DOI | MR | Zbl

[24] A. N. Vernik, D. Z. Ilyazova, “Obobschennye rezolventy i spektralnye funktsii beskonechnomernogo analoga operatora differentsirovaniya Kreina–Fellera”, Izv. vuzov. Matem., 1986, no. 4, 20–26 | MR | Zbl