Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 867-877 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved, for the case in which the ground field is of characteristic zero, that the variety of Leibniz algebras left nilpotent of class at most three is a variety of almost exponential growth with almost polynomial growth of the colength and has almost finite multiplicities.
Keywords: variety of algebras, Leibniz algebras, nilpotent algebras, almost exponential growth, almost polynomial growth, almost finite multiplicities, Heisenberg algebras, Young diagram.
@article{MZM_2014_95_6_a7,
     author = {S. P. Mishchenko and Yu. Yu. Frolova},
     title = {Some {Extremal} {Properties} of the {Variety} of {Leibniz} {Algebras} {Left} {Nilpotent} of {Class} at {Most} {Three}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {867--877},
     year = {2014},
     volume = {95},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a7/}
}
TY  - JOUR
AU  - S. P. Mishchenko
AU  - Yu. Yu. Frolova
TI  - Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three
JO  - Matematičeskie zametki
PY  - 2014
SP  - 867
EP  - 877
VL  - 95
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a7/
LA  - ru
ID  - MZM_2014_95_6_a7
ER  - 
%0 Journal Article
%A S. P. Mishchenko
%A Yu. Yu. Frolova
%T Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three
%J Matematičeskie zametki
%D 2014
%P 867-877
%V 95
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a7/
%G ru
%F MZM_2014_95_6_a7
S. P. Mishchenko; Yu. Yu. Frolova. Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 867-877. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a7/

[1] Yu. A. Bakhturin, Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] A. Giambruno, M. V. Zaicev, Polynomial Identities and Asymptotic Methods, Math. Surveys Monogr., 122, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[3] A. M. Blokh, “Ob odnom obobschenii ponyatiya algebry Li”, Dokl. AN SSSR, 18:3 (1965), 471–473

[4] L. E. Abanina, S. P. Mishchenko, “The variety of Leibniz algebras defined by the identity $x(y(zt))\equiv 0$”, Serdica Math. J., 29:3 (2003), 291–300 | MR | Zbl

[5] G. E. Andrews, The Theory of Partitions, Encyclopedia of Math. Appl., 2, Addison-Wesley Publ., Reading, MA, 1976 | MR | Zbl

[6] P. J. Higgins, “Lie rings satisfying the Engel condition”, Proc. Cambridge Philos. Soc., 50:1 (1954), 8–15 | DOI | MR | Zbl

[7] S. P. Mishchenko, V. M. Petrogradsky, A. Regev, “Poisson PI algebras”, Trans. Amer. Math. Soc., 359:10 (2007), 4669–4694 | DOI | MR | Zbl

[8] M. V. Zaitsev, S. P. Mischenko, “Novoe ekstremalnoe svoistvo mnogoobraziya algebr Li $AN_2$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1999, no. 5, 15–18 | MR | Zbl