Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 867-877.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved, for the case in which the ground field is of characteristic zero, that the variety of Leibniz algebras left nilpotent of class at most three is a variety of almost exponential growth with almost polynomial growth of the colength and has almost finite multiplicities.
Keywords: variety of algebras, Leibniz algebras, nilpotent algebras, almost exponential growth, almost polynomial growth, almost finite multiplicities, Heisenberg algebras, Young diagram.
@article{MZM_2014_95_6_a7,
     author = {S. P. Mishchenko and Yu. Yu. Frolova},
     title = {Some {Extremal} {Properties} of the {Variety} of {Leibniz} {Algebras} {Left} {Nilpotent} of {Class} at {Most} {Three}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {867--877},
     publisher = {mathdoc},
     volume = {95},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a7/}
}
TY  - JOUR
AU  - S. P. Mishchenko
AU  - Yu. Yu. Frolova
TI  - Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three
JO  - Matematičeskie zametki
PY  - 2014
SP  - 867
EP  - 877
VL  - 95
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a7/
LA  - ru
ID  - MZM_2014_95_6_a7
ER  - 
%0 Journal Article
%A S. P. Mishchenko
%A Yu. Yu. Frolova
%T Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three
%J Matematičeskie zametki
%D 2014
%P 867-877
%V 95
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a7/
%G ru
%F MZM_2014_95_6_a7
S. P. Mishchenko; Yu. Yu. Frolova. Some Extremal Properties of the Variety of Leibniz Algebras Left Nilpotent of Class at Most Three. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 867-877. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a7/

[1] Yu. A. Bakhturin, Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] A. Giambruno, M. V. Zaicev, Polynomial Identities and Asymptotic Methods, Math. Surveys Monogr., 122, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[3] A. M. Blokh, “Ob odnom obobschenii ponyatiya algebry Li”, Dokl. AN SSSR, 18:3 (1965), 471–473

[4] L. E. Abanina, S. P. Mishchenko, “The variety of Leibniz algebras defined by the identity $x(y(zt))\equiv 0$”, Serdica Math. J., 29:3 (2003), 291–300 | MR | Zbl

[5] G. E. Andrews, The Theory of Partitions, Encyclopedia of Math. Appl., 2, Addison-Wesley Publ., Reading, MA, 1976 | MR | Zbl

[6] P. J. Higgins, “Lie rings satisfying the Engel condition”, Proc. Cambridge Philos. Soc., 50:1 (1954), 8–15 | DOI | MR | Zbl

[7] S. P. Mishchenko, V. M. Petrogradsky, A. Regev, “Poisson PI algebras”, Trans. Amer. Math. Soc., 359:10 (2007), 4669–4694 | DOI | MR | Zbl

[8] M. V. Zaitsev, S. P. Mischenko, “Novoe ekstremalnoe svoistvo mnogoobraziya algebr Li $AN_2$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1999, no. 5, 15–18 | MR | Zbl