Interior Klein Polyhedra
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 854-866

Voir la notice de l'article provenant de la source Math-Net.Ru

The convex hull of all integer points of a noncompact polyhedron is closed and is a generalized polyhedron only under certain conditions. It is proved that if only the integer points in the interior of the polyhedron are taken, then most of the conditions can be dropped. Moreover, the object thus obtained has properties resembling those of a Klein polyhedron, and it is a Klein polyhedron in the case of an irrational simplicial cone.
Keywords: continued fraction, Klein polyhedron, interior Klein polyhedron, simplicial cone.
@article{MZM_2014_95_6_a6,
     author = {I. A. Makarov},
     title = {Interior {Klein} {Polyhedra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {854--866},
     publisher = {mathdoc},
     volume = {95},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a6/}
}
TY  - JOUR
AU  - I. A. Makarov
TI  - Interior Klein Polyhedra
JO  - Matematičeskie zametki
PY  - 2014
SP  - 854
EP  - 866
VL  - 95
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a6/
LA  - ru
ID  - MZM_2014_95_6_a6
ER  - 
%0 Journal Article
%A I. A. Makarov
%T Interior Klein Polyhedra
%J Matematičeskie zametki
%D 2014
%P 854-866
%V 95
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a6/
%G ru
%F MZM_2014_95_6_a6
I. A. Makarov. Interior Klein Polyhedra. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 854-866. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a6/