Interior Klein Polyhedra
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 854-866.

Voir la notice de l'article provenant de la source Math-Net.Ru

The convex hull of all integer points of a noncompact polyhedron is closed and is a generalized polyhedron only under certain conditions. It is proved that if only the integer points in the interior of the polyhedron are taken, then most of the conditions can be dropped. Moreover, the object thus obtained has properties resembling those of a Klein polyhedron, and it is a Klein polyhedron in the case of an irrational simplicial cone.
Keywords: continued fraction, Klein polyhedron, interior Klein polyhedron, simplicial cone.
@article{MZM_2014_95_6_a6,
     author = {I. A. Makarov},
     title = {Interior {Klein} {Polyhedra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {854--866},
     publisher = {mathdoc},
     volume = {95},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a6/}
}
TY  - JOUR
AU  - I. A. Makarov
TI  - Interior Klein Polyhedra
JO  - Matematičeskie zametki
PY  - 2014
SP  - 854
EP  - 866
VL  - 95
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a6/
LA  - ru
ID  - MZM_2014_95_6_a6
ER  - 
%0 Journal Article
%A I. A. Makarov
%T Interior Klein Polyhedra
%J Matematičeskie zametki
%D 2014
%P 854-866
%V 95
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a6/
%G ru
%F MZM_2014_95_6_a6
I. A. Makarov. Interior Klein Polyhedra. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 854-866. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a6/

[1] P. Erdös, P. M. Gruber, J. Hammer, Lattice Points, Pitman Monogr. Surveys Pure Appl. Math., 39, Longman Sci. Tech., Harlow, 1989 | MR | Zbl

[2] O. Perron, “Grundlagen für eine Theorie des Jacobische Kettenbruchalgoritmus”, Math. Ann., 64 (1907), 1–76 | Zbl

[3] D. I. Bodnar, Vetvyaschiesya tsepnye drobi, Naukova Dumka, Kiev, 1986 | MR

[4] F. Klein, “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwickelung”, Gött. Nachr., 3 (1895), 357–359 | Zbl

[5] V. I. Arnol'd, “$A$-graded algebras and continued fractions”, Comm. Pure Appl. Math., 42:7 (1989), 993–1000 | DOI | MR | Zbl

[6] A. D. Bryuno, V. I. Parusnikov, “Mnogogranniki Kleina dlya dvukh kubicheskikh form Davenporta”, Matem. zametki, 56:4 (1994), 9–27 | MR | Zbl

[7] Zh.-O. Mussafir, “Parusa i bazisy Gilberta”, Funkts. analiz i ego pril., 34:2 (2000), 43–49 | DOI | MR | Zbl

[8] O. N. German, “Parusa i bazisy Gilberta”, Diskretnaya geometriya i geometriya chisel, Tr. MIAN, 239, Nauka, M., 2002, 98–105 | MR | Zbl

[9] O. N. German, “Parusa i normennye minimumy reshetok”, Matem. sb., 196:3 (2005), 31–60 | DOI | MR | Zbl

[10] O. N. German, “Poliedry Kleina i otnositelnye minimumy reshetok”, Matem. zametki, 79:4 (2006), 546–552 | DOI | MR | Zbl

[11] O. N. German, “Klein polyhedra and lattices with positive norm minima”, J. Théor. Nombres Bordeaux, 19:1 (2007), 175–190 | MR | Zbl

[12] O. N. German, E. L. Lakshtanov, “O mnogomernom obobschenii teoremy Lagranzha dlya tsepnykh drobei”, Izv. RAN. Ser. matem., 72:1 (2008), 51–66 | DOI | MR | Zbl

[13] M. L. Kontsevich, Yu. M. Suhov, “Statistics of Klein polyhedra and multidimensional continued fractions”, Pseudoperiodic Topology, Amer. Math. Soc. Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999, 9–27 | MR | Zbl

[14] A. A. Illarionov, D. A. Slinkin, “O kolichestve vershin mnogogrannikov Kleina tselochislennykh reshetok v srednem”, Dalnevost. matem. zhurn., 11:1 (2011), 48–55

[15] A. A. Illarionov, “O statisticheskikh svoistvakh mnogogrannikov Kleina trekhmernykh tselochislennykh reshetok”, Matem. sb., 204:6 (2013), 23–46 | DOI | MR | Zbl

[16] S. S. Dey, D. A. Morán R., Some Properties of Convex Hulls of Integer Points Contained in General Convex Sets, Preprint, 2011

[17] J.-O. Moussafir, “Convex hulls of integral points”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. V, Zap. nauchn. sem. POMI, 266, POMI, SPb., 2000, 188–217 | MR | Zbl

[18] G. M. Ziegler, Lectures on Polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995 | MR | Zbl