Generic Structure of the Lagrangian Manifold in Chattering Problems
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 842-853.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the structure of the singularity of Lagrangian manifolds in a neighborhood of the surface of singular extremals of second order in optimal control problems. For the Fuller classical problem, the structure of the Lagrangian manifold is explicitly constructed: it is shown that it has a singularity of conic type at the origin of coordinates. In the general case, it is proved that the Lagrangian manifold is a locally trivial fiber bundle over the surface of singular extremals with each fiber having a singularity of a similar conic type at the point of exit of the singular extremals.
Keywords: chattering problem, Lagrangian manifold, singular extremal, Fuller chattering problem, singular extremal, Hamiltonian system, singularity of conic type.
@article{MZM_2014_95_6_a5,
     author = {L. V. Lokutsievskii},
     title = {Generic {Structure} of the {Lagrangian} {Manifold} in {Chattering} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {842--853},
     publisher = {mathdoc},
     volume = {95},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a5/}
}
TY  - JOUR
AU  - L. V. Lokutsievskii
TI  - Generic Structure of the Lagrangian Manifold in Chattering Problems
JO  - Matematičeskie zametki
PY  - 2014
SP  - 842
EP  - 853
VL  - 95
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a5/
LA  - ru
ID  - MZM_2014_95_6_a5
ER  - 
%0 Journal Article
%A L. V. Lokutsievskii
%T Generic Structure of the Lagrangian Manifold in Chattering Problems
%J Matematičeskie zametki
%D 2014
%P 842-853
%V 95
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a5/
%G ru
%F MZM_2014_95_6_a5
L. V. Lokutsievskii. Generic Structure of the Lagrangian Manifold in Chattering Problems. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 842-853. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a5/

[1] M. I. Zelikin, V. F. Borisov, Theory of Chattering Control, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, 1994 | MR

[2] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005

[3] A. F. Filippov, Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[4] I. A. K. Kupka, “The ubiquity of Fuller's phenomenon”, Nonlinear Controllability and Optimal Control, Monogr. Textbooks Pure Appl. Math., 133, Dekker, New York, 1990, 313–350 | MR | Zbl