Betti and Tachibana Numbers
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 926-936
Voir la notice de l'article provenant de la source Math-Net.Ru
The Tachibana numbers $t_r(M)$, the Killing numbers $k_r(M)$, and the planarity numbers $p_r(M)$ are considered as the dimensions of the vector spaces of, respectively, all, coclosed, and closed conformal Killing $r$-forms with $1\le r\le n-1$ “globally” defined on a compact Riemannian $n$-manifold $(M,g)$, $n\ge 2$. Their relationship with the Betti numbers $b_r(M)$ is investigated. In particular, it is proved that if $b_r(M)=0$, then the corresponding Tachibana number has the form $t_r(M)=k_r(M)+p_r(M)$ for $t_r(M)>k_r(M)>0$. In the special case where $b_1(M)=0$ and $t_1(M)>k_1(M)>0$, the manifold $(M,g)$ is conformally diffeomorphic to the Euclidean sphere.
Keywords:
compact manifold, Tachibana number, Killing number, planarity number, Betti number, conformal Killing form, conformal Killing (co)closed form.
@article{MZM_2014_95_6_a12,
author = {S. E. Stepanov},
title = {Betti and {Tachibana} {Numbers}},
journal = {Matemati\v{c}eskie zametki},
pages = {926--936},
publisher = {mathdoc},
volume = {95},
number = {6},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a12/}
}
S. E. Stepanov. Betti and Tachibana Numbers. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 926-936. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a12/