Betti and Tachibana Numbers
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 926-936.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Tachibana numbers $t_r(M)$, the Killing numbers $k_r(M)$, and the planarity numbers $p_r(M)$ are considered as the dimensions of the vector spaces of, respectively, all, coclosed, and closed conformal Killing $r$-forms with $1\le r\le n-1$ “globally” defined on a compact Riemannian $n$-manifold $(M,g)$, $n\ge 2$. Their relationship with the Betti numbers $b_r(M)$ is investigated. In particular, it is proved that if $b_r(M)=0$, then the corresponding Tachibana number has the form $t_r(M)=k_r(M)+p_r(M)$ for $t_r(M)>k_r(M)>0$. In the special case where $b_1(M)=0$ and $t_1(M)>k_1(M)>0$, the manifold $(M,g)$ is conformally diffeomorphic to the Euclidean sphere.
Keywords: compact manifold, Tachibana number, Killing number, planarity number, Betti number, conformal Killing form, conformal Killing (co)closed form.
@article{MZM_2014_95_6_a12,
     author = {S. E. Stepanov},
     title = {Betti and {Tachibana} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {926--936},
     publisher = {mathdoc},
     volume = {95},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a12/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - Betti and Tachibana Numbers
JO  - Matematičeskie zametki
PY  - 2014
SP  - 926
EP  - 936
VL  - 95
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a12/
LA  - ru
ID  - MZM_2014_95_6_a12
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T Betti and Tachibana Numbers
%J Matematičeskie zametki
%D 2014
%P 926-936
%V 95
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a12/
%G ru
%F MZM_2014_95_6_a12
S. E. Stepanov. Betti and Tachibana Numbers. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 926-936. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a12/

[1] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR | Zbl

[2] S. Tachibana, “On conformal Killing tensor in a Riemannian space”, Tôhoku Math. J., 21 (1969), 56–64 | DOI | MR | Zbl

[3] C. E. Stepanov, “Vektornoe prostranstvo konformno-killingovykh form na rimanovom mnogoobrazii”, Geometriya i topologiya. 4, Zap. nauchn. sem. POMI, 261, POMI, SPb., 1999, 240–265 | MR | Zbl

[4] U. Semmelmann, “Conformal Killing forms on Riemannian manifolds”, Math. Z., 245:3 (2003), 503–627 | DOI | MR | Zbl

[5] G. A. Rod, J. Šilhan, “The conformal Killing equation on forms – prolongations and applications”, Differential Geom. Appl., 26:3 (2008), 244–266 | DOI | MR | Zbl

[6] I. M. Benn, P. Chalton, “Dirac symmetry operators from conformal Killing–Yano tensors”, Classical Quantum Gravity, 14:5 (1997), 1037–1042 | DOI | MR | Zbl

[7] S. E. Stepanov, “On conformal Killing $2$-form of the electromagnetic field”, J. Geom. Phys., 33:3-4 (2000), 191–209 | DOI | MR | Zbl

[8] V. P. Frolov, A. Zelikov, Introduction to Black Hole Physics, Oxford Univ. Press, Oxford, 2011

[9] T. Houri, T. Oota, Yu. Yasui, “Closed conformal Killing–Yano tensor and the uniqueness of generalized Kerr–Nut–de Sitter”, Classical Quantum Gravity, 26:4 (2009), 045015 | MR | Zbl

[10] M. Gromov, Znak i geometricheskii smysl krivizny, Izd-vo Udmurtskogo un-ta, Izhevsk, 1999

[11] D. V. Alekseevskii, A. M. Vinogradov, B. B. Lychagin, “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Geometriya – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 28, VINITI, M., 1988, 5–289 | MR | Zbl

[12] D. Volf, Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR | Zbl

[13] C. E. Stepanov, “Krivizna i chisla Tachibany”, Matem. sb., 202:7 (2011), 135–146 | DOI | MR | Zbl

[14] K. Yano, S. Bokhner, Krivizna i chisla Betti, IL, M., 1957 | Zbl

[15] S. P. Novikov, “Topologiya”, Topologiya – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 12, VINITI, M., 1986, 5–252 | MR | Zbl

[16] S. E. Stepanov, “O nekotorykh konformnykh i proektivnykh skalyarnykh invariantakh rimanova mnogoobraziya”, Matem. zametki, 80:6 (2006), 902–907 | DOI | MR | Zbl

[17] W. Kühnel, H.-B. Rademacher, “Conformal transformations of pseudo-Riemannian manifolds”, Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., European Math. Soc., Zürich, 2008, 261–298 | MR | Zbl

[18] D. Kramer, Kh. Shtefan, M. Mak-Kallum, E. Kherlt, Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | MR

[19] S. E. Stepanov, I. I. Tsyganok, “O razmernosti vektornogo prostranstva konformno killingovykh form”, Differentsialnaya geometriya mnogoobrazii figur, 42, Kaliningr. un-t, Kaliningrad, 2011, 134–140

[20] J. Mikeš, S. Stepanov, I. Hintrleitner,, “Projective mappings and dimensions of vector spaces of three types of Killing–Yano tensors on pseudo-Riemannian manifolds of constant curvature”, AIP Conf. Proc., 1460 (2012), 202–205 | DOI

[21] J.-P. Bourguignon, J.-P. Ezin, “Scalar curvature functions in a conformal class of metrics and conformal transformations”, Trans. Amer. Math. Soc., 301:2 (1987), 723–736 | DOI | MR | Zbl

[22] P. Petersen, Riemannian Geometry, Grad. Texts in Math., 171, Springer-Verlag, New York, 1998 | MR | Zbl

[23] A. Besse, Mnogoobraziya Enshteina, T. 1, 2, Mir, M., 1990 | MR | Zbl

[24] Chetyrekhmernaya rimanova geometriya. Seminar Artura Besse, ed. A. N. Tyurin, Mir, M., 1985 | MR

[25] S. E. Stepanov, “Novyi silnyi laplasian na differentsialnykh formakh”, Matem. zametki, 76:3 (2004), 452–458 | DOI | MR | Zbl

[26] Y. Tashiro, “Complete Riemannian manifolds and some vector fields”, Trans. Amer. Math. Soc., 117 (1965), 251–275 | DOI | MR | Zbl

[27] S. Tachibana, “On the proper space of $\Delta$ for $m$-forms in $2m$-dimensional conformal flat Riemannian manifolds”, Natur. Sci. Rep. Ochanomizu Univ., 29:2 (1978), 111–115 | MR | Zbl

[28] C. Böhm, B. Wilking, “Manifolds with positive curvature operators are space forms”, Ann. of Math. (2), 167:3 (2008), 1079–1097 | DOI | MR | Zbl

[29] R. Schoen, S.-T. Yau, “Conformal flat manifolds, Kleinian groups and scalar curvature”, Invent. Math., 92:1 (1988), 47–71 | DOI | MR | Zbl

[30] Sh. Tachibana, “On Killing tensor in a Riemannian space”, Tôhoku Math. J. (2), 20 (1968), 257–264 | DOI | MR | Zbl

[31] Sh. Tachibana, T. Kashiwada, “On the integrability of Killing–Yano's equation”, J. Math. Soc. Japan, 21:2 (1969), 259–265 | DOI | MR | Zbl