Multiple Walsh Series and Zygmund Sets
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 750-762

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Zygmund theorem claims that, for any sequence of positive numbers $\{\varepsilon_n\}$ monotonically tending to zero and any $\delta>0$, there exists a set of uniqueness for the class of trigonometric series whose coefficients are majorized by the sequence $\{\varepsilon_n\}$ whose measure is greater than $2\pi-\delta$. In this paper, we prove the analog of Zygmund's theorem for multiple series in the Walsh system on whose coefficients rather weak constraints are imposed.
Keywords: multiple Walsh series, Zygmund set, set of uniqueness, binary group, Abelian group, binary cube, quasimeasure.
@article{MZM_2014_95_5_a9,
     author = {M. G. Plotnikov},
     title = {Multiple {Walsh} {Series} and {Zygmund} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {750--762},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a9/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Multiple Walsh Series and Zygmund Sets
JO  - Matematičeskie zametki
PY  - 2014
SP  - 750
EP  - 762
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a9/
LA  - ru
ID  - MZM_2014_95_5_a9
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Multiple Walsh Series and Zygmund Sets
%J Matematičeskie zametki
%D 2014
%P 750-762
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a9/
%G ru
%F MZM_2014_95_5_a9
M. G. Plotnikov. Multiple Walsh Series and Zygmund Sets. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 750-762. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a9/