Mappings by the Solutions of Second-Order Elliptic Equations
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 718-733.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of mappings by the solutions of second-order elliptic partial differential equations in the plane are studied. We obtain conditions on a function, continuous on the unit circle, that are sufficient for the solution of the Dirichlet problem in the open unit disk for the given equation with the given boundary function to be a homeomorphism between the open unit disk and a Jordan simply connected domain. The properties of the zeros of the solutions of the given equations are also studied. In particular, an analog of the main theorem of algebra is proved for polynomial solutions.
Keywords: elliptic partial differential equation, Dirichlet problem, Jordan simply connected domain, Fourier series.
@article{MZM_2014_95_5_a7,
     author = {A. B. Zaitsev},
     title = {Mappings by the {Solutions} of {Second-Order} {Elliptic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {718--733},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a7/}
}
TY  - JOUR
AU  - A. B. Zaitsev
TI  - Mappings by the Solutions of Second-Order Elliptic Equations
JO  - Matematičeskie zametki
PY  - 2014
SP  - 718
EP  - 733
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a7/
LA  - ru
ID  - MZM_2014_95_5_a7
ER  - 
%0 Journal Article
%A A. B. Zaitsev
%T Mappings by the Solutions of Second-Order Elliptic Equations
%J Matematičeskie zametki
%D 2014
%P 718-733
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a7/
%G ru
%F MZM_2014_95_5_a7
A. B. Zaitsev. Mappings by the Solutions of Second-Order Elliptic Equations. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 718-733. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a7/

[1] P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Math., 156, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[2] M. B. Balk, “Polianaliticheskie funktsii i ikh obobscheniya”, Kompleksnyi analiz. Odna peremennaya – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 85, VINITI, M., 1991, 187–246 | MR | Zbl

[3] G. C. Verchota, A. L. Vogel, “Nonsymmetric systems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl

[4] P. V. Paramonov, K. Yu. Fedorovskii, “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 190:2 (1999), 123–144 | DOI | MR | Zbl

[5] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985 | MR | Zbl

[6] G. Alessandrini, V. Nes, “Elliptic systems and material interpretation”, Funct. Approx. Comment. Math., 40, Part 1 (2009), 105–115 | DOI | MR | Zbl

[7] M. B. Balk, M. Ya. Mazalov, “On uniqueness conditions for entire polyharmonic functions”, Partial Differential and Integral Equations, Int. Soc. Anal. Appl. Comput., 2, Kluwer Acad. Publ., Dordrecht, 1999, 219–232 | MR | Zbl