A Class of Affinely Equivalent Voronoi Parallelohedra
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 697-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given any parallelohedron $P$, its affine class $\mathscr A(P)$, i.e., the set of all parallelohedra affinely equivalent to it, is considered. Does this affine class contain at least one Voronoi parallelohedron, i.e., a parallelohedron which is a Dirichlet domain for some lattice? This question, more commonly known as Voronoi's conjecture, has remained unanswered for more than a hundred years. It is shown that, in the case where the subset of Voronoi parallelohedra in $\mathscr A(P)$ is nonempty, this subset is an orbifold, and its dimension (as a real manifold with singularities) is completely determined by its combinatorial type; namely, it is equal to the number of connected components of the so-called Venkov subgraph of the given parallelohedron. Nevertheless, the structure of this orbifold depends not only on the combinatorial properties of the parallelohedron but also on its affine properties.
Mots-clés : parallelohedron, Voronoi parallelohedron
Keywords: affinely equivalent parallelohedra, Venkov graph, Venkov subgraph, orbifold of Voronoi parallelohedra.
@article{MZM_2014_95_5_a5,
     author = {A. A. Gavrilyuk},
     title = {A {Class} of {Affinely} {Equivalent} {Voronoi} {Parallelohedra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {697--707},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a5/}
}
TY  - JOUR
AU  - A. A. Gavrilyuk
TI  - A Class of Affinely Equivalent Voronoi Parallelohedra
JO  - Matematičeskie zametki
PY  - 2014
SP  - 697
EP  - 707
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a5/
LA  - ru
ID  - MZM_2014_95_5_a5
ER  - 
%0 Journal Article
%A A. A. Gavrilyuk
%T A Class of Affinely Equivalent Voronoi Parallelohedra
%J Matematičeskie zametki
%D 2014
%P 697-707
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a5/
%G ru
%F MZM_2014_95_5_a5
A. A. Gavrilyuk. A Class of Affinely Equivalent Voronoi Parallelohedra. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 697-707. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a5/

[1] E. S. Fedorov, Nachala ucheniya o figurakh, Sankt-Peterburg, 1885

[2] H. Minkowski, “Allgemeine Lehersätze über konvexe Polyeder”, Göott. Nachr., 1897 (1897), 198–219 | Zbl

[3] B. A. Venkov, “Ob odnom klasse evklidovykh mnogogrannikov”, Vestn. Leningradsk. un-ta. Ser. matem., fiz., khim., 1954, no. 9, 11–31 | MR

[4] P. McMullen, “Convex bodies which tile space by translation”, Mathematika, 27:1 (1980), 113–121 | DOI | MR | Zbl

[5] N. P. Dolbilin, “The extension theorem”, Discrete Math., 221:1-3 (2000), 43–59 | DOI | MR | Zbl

[6] N. P. Dolbilin, V. S. Makarov, “Teorema o prodolzhenii v teorii pravilnykh razbienii i ee prilozheniya”, Diskretnaya geometriya i geometriya chisel, Tr. MIAN, 239, Nauka, M., 2002, 146–169 | MR | Zbl

[7] G. Voronoi, “Nouvelles applications des paramétres continus á la theorie des formes quadratiques. Deuxième mémoire. Recherches sur les paralléloédres primitifs”, J. für Math., 136 (1909), 67–178 | Zbl

[8] O. Zitomirskij, “Vershärfung eines Satzes von Woronoi”, Zhurn. Leningradsk. fiz.-matem. ob-va, 2:2 (1929), 131–151

[9] A. Ordine, Proof of the Voronoi conjecture on parallelotopes in a new special case, PhD Thesis, Queen's University, Kingston, 2005 | MR

[10] A. Garber, A. Gavrilyuk, A. Magazinov, “The Voronoi conjecture for parallelohedra with simply connected $\delta$-surface”, Discrete Comput. Geom. (to appear) , arXiv: math.MG/1212.1019v1

[11] R. M. Erdahl, “Zonotopes, dicings, and Voronoi's conjecture on parallelohedra”, European J. Combin., 20:6 (1999), 527–549 | DOI | MR | Zbl

[12] L. Michel, S. S. Ryshkov, M. Senechal, “An extension of Voronoï's theorem on primitive parallelotopes”, European J. Combin., 16 (1995), 59–63 | DOI | MR | Zbl

[13] N. Dolbilin, J.-I. Itoh, C. Nara, “Affine equivalent classes of parallelohedra”, Computational Geometry, Graphs and Applications, Lecture Notes in Comput. Sci., 7033, Springer-Verlag, Heidelberg, 2011, 55–60 | DOI | MR | Zbl

[14] N. P. Dolbilin, “Paralleloedry: retrospektiva i novye rezultaty”, Tr. MMO, 73, no. 2, MTsNMO, M., 2012, 259–276 | Zbl

[15] N. P. Dolbilin, “Svoistva granei paralleloedrov”, Geometriya, topologiya i matematicheskaya fizika. II, Tr. MIAN, 266, MAIK, M., 2009, 112–126 | MR | Zbl

[16] G. C. Shephard, “Polytopes with centrally symmetric faces”, Canad. J. Math., 19 (1967), 1206–1213 | MR | Zbl

[17] G. M. Ziegler, Lectures on Polytopes, Grad. Texts in Math., 152, Springer-Verlag, New-York, 1995 | MR | Zbl

[18] W. P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton Univ. Lectures Notes, Princeton Univ., 1980