On Certain Identities for Ratios of Theta-Functions and Some New Modular Equations of Mixed Degree
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 685-696.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we derive certain identities for ratios of theta-functions. As applications of the identities, we establish certain new modular equations of mixed degree in the theory of signature 3, which are analogous to Ramanujan–Weber type modular equations and Ramanujan–Schläfli type mixed modular equations.
Keywords: Ramanujan theta-function, modular equation.
@article{MZM_2014_95_5_a4,
     author = {K. R. Vasuki and C. Chamaraju},
     title = {On {Certain} {Identities} for {Ratios} of {Theta-Functions} and {Some} {New} {Modular} {Equations} of {Mixed} {Degree}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {685--696},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a4/}
}
TY  - JOUR
AU  - K. R. Vasuki
AU  - C. Chamaraju
TI  - On Certain Identities for Ratios of Theta-Functions and Some New Modular Equations of Mixed Degree
JO  - Matematičeskie zametki
PY  - 2014
SP  - 685
EP  - 696
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a4/
LA  - ru
ID  - MZM_2014_95_5_a4
ER  - 
%0 Journal Article
%A K. R. Vasuki
%A C. Chamaraju
%T On Certain Identities for Ratios of Theta-Functions and Some New Modular Equations of Mixed Degree
%J Matematičeskie zametki
%D 2014
%P 685-696
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a4/
%G ru
%F MZM_2014_95_5_a4
K. R. Vasuki; C. Chamaraju. On Certain Identities for Ratios of Theta-Functions and Some New Modular Equations of Mixed Degree. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 685-696. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a4/

[1] S. Ramanujan, Notebooks, Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957 | MR | Zbl

[2] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991 | MR | Zbl

[3] B. C. Berndt, L.-C. Zhang, “Ramanujan's identities for theta-functions”, Math. Ann., 292:3 (1992), 561–573 | DOI | MR | Zbl

[4] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publ. House, New Delhi, 1988 | MR | Zbl

[5] B. C. Berndt, “Modular equations in Ramanujan's lost notebook”, Number Theory, Hindustan Book, New Delhi, 1999, 55–74 | MR | Zbl

[6] Ch. Adiga, K. R. Vasuki, M. S. Mahadeva Naika, “Some new explicit evaluations of Ramanujan's cubic continued fraction”, New Zealand J. Math., 31:2 (2002), 109–114 | MR | Zbl

[7] Ch. Adiga, K. Shivashankara, K. R. Vasuki, “Some theta function identities and new explicit evaluation of Rogers–Ramanujan continued fraction”, Tamsui Oxf. J. Math. Sci., 18:1 (2002), 101–117 | MR | Zbl

[8] N. D. Baruah, N. Saikia, “Some general theorems on the explicit evaluations of Ramanujan's cubic continued fraction”, J. Comput. Appl. Math., 160:1-2 (2003), 37–51 | DOI | MR | Zbl

[9] S. Bhargava, K. R. Vasuki, T. G. Sreeramamurthy, “Some evaluations of Ramanujan's cubic continued fraction”, Indian J. of Pure appl. Math., 35 (2004), 1003–1025 | MR | Zbl

[10] S.-Y. Kang, “Ramanujan's formulas for explicit evaluation of the Rogers–Ramanujan continued fraction and theta-functions”, Acta Arith., 90:1 (1999), 49–68 | MR | Zbl

[11] M. S. Mahadeva Naika, B. N. Dharmendra, “On Some new general Theorem for the explicit evaluations of Ramanujan's remarkable product of theta-function”, Ramanujan J., 15:3 (2008), 349–366 | DOI | MR | Zbl

[12] K. R. Vasuki, K. Shivashankara, “A note on explicit evaluations of products and ratios of class invariants”, Math. Forum, 13 (2000), 45–46 | MR

[13] K. R. Vasuki, T. G. Sreeramamurthy, “A note on explicit evaluations of Ramanujan's continued fraction”, Adv. Stud. Contemp. Math. (Kyungshang), 9:1 (2004), 63–80 | MR | Zbl

[14] K. R. Vasuki, B. R. Srivatsa Kumar, “Evaluations of the Ramanujan–Göllnitz–Gordon continued fraction $H(q)$ by modular equations”, Indian J. Math., 48:3 (2006), 275–300 | MR | Zbl

[15] J. Yi, “Evaluations of the Rogers–Ramanujan's continued fraction $R(q)$ by modular equations”, Acta. Arith., 97:2 (2001), 103–127 | DOI | MR | Zbl

[16] S. Bhargava, Ch. Adiga, M. S. M. Naika, “A new class of modular equations in Ramanujan's alternative theory of elliptic functions of signature $4$ and some new $P$-$Q$ eta fuction identities”, Indian. J. Math., 45:1 (2003), 23–39 | MR | Zbl

[17] B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, New York, 1994 | MR | Zbl

[18] K. R. Vasuki, T. G. Sreeramamurthy, “Certain new Ramanujan's Schläfli-type mixed modular equations”, J. Math. Anal. Appl., 309:1 (2005), 238–255 | DOI | MR | Zbl

[19] L. Schläfli, “Beweis der Hermiteschen Verwandlungstafeln für elliptischen modularfunction”, J. Reine Angew. Math., 1870:72 (1870), 360–369 | DOI

[20] R. Russell, “On modular equations”, Proc. London Math. Soc., 21 (1889), 351–395 | DOI | MR | Zbl

[21] B. C. Berndt, Ramanujan's Notebooks, Part V, Springer–Verlag, New York, 1998 | MR | Zbl

[22] H. Weber, “Zur Theorie der elliptischen Functionen”, Acta Math., 11:1-4 (1887), 333–390 | DOI | MR | Zbl

[23] B. C. Berndt, S. Bhargava, F. G. Garvan, “Ramanujan's theories of elliptic functions to alternative bases”, Trans. Amer. Math. Soc., 347:11 (1995), 4163–4244 | MR | Zbl

[24] H. H. Chan, W.-C. Liaw, “Cubic modular equations and new Ramanujan-type series for $1/\pi$”, Pacific J. Math., 192:2 (2000), 219–238 | DOI | MR | Zbl

[25] M. S. Mahadeva Naika, “On some cubic Russell-type mixed modular equations”, Adv. Stud. Contemp. Math. (Kyungshang), 10:2 (2005), 219–231 | MR | Zbl