On Certain Identities for Ratios of Theta-Functions and Some New Modular Equations of Mixed Degree
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 685-696
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we derive certain identities for ratios of theta-functions. As applications of the identities, we establish certain new modular equations of mixed degree in the theory of signature 3, which are analogous to Ramanujan–Weber type modular equations and Ramanujan–Schläfli type mixed modular equations.
Keywords:
Ramanujan theta-function, modular equation.
@article{MZM_2014_95_5_a4,
author = {K. R. Vasuki and C. Chamaraju},
title = {On {Certain} {Identities} for {Ratios} of {Theta-Functions} and {Some} {New} {Modular} {Equations} of {Mixed} {Degree}},
journal = {Matemati\v{c}eskie zametki},
pages = {685--696},
publisher = {mathdoc},
volume = {95},
number = {5},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a4/}
}
TY - JOUR AU - K. R. Vasuki AU - C. Chamaraju TI - On Certain Identities for Ratios of Theta-Functions and Some New Modular Equations of Mixed Degree JO - Matematičeskie zametki PY - 2014 SP - 685 EP - 696 VL - 95 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a4/ LA - ru ID - MZM_2014_95_5_a4 ER -
K. R. Vasuki; C. Chamaraju. On Certain Identities for Ratios of Theta-Functions and Some New Modular Equations of Mixed Degree. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 685-696. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a4/