Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_5_a4, author = {K. R. Vasuki and C. Chamaraju}, title = {On {Certain} {Identities} for {Ratios} of {Theta-Functions} and {Some} {New} {Modular} {Equations} of {Mixed} {Degree}}, journal = {Matemati\v{c}eskie zametki}, pages = {685--696}, publisher = {mathdoc}, volume = {95}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a4/} }
TY - JOUR AU - K. R. Vasuki AU - C. Chamaraju TI - On Certain Identities for Ratios of Theta-Functions and Some New Modular Equations of Mixed Degree JO - Matematičeskie zametki PY - 2014 SP - 685 EP - 696 VL - 95 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a4/ LA - ru ID - MZM_2014_95_5_a4 ER -
K. R. Vasuki; C. Chamaraju. On Certain Identities for Ratios of Theta-Functions and Some New Modular Equations of Mixed Degree. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 685-696. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a4/
[1] S. Ramanujan, Notebooks, Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957 | MR | Zbl
[2] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991 | MR | Zbl
[3] B. C. Berndt, L.-C. Zhang, “Ramanujan's identities for theta-functions”, Math. Ann., 292:3 (1992), 561–573 | DOI | MR | Zbl
[4] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publ. House, New Delhi, 1988 | MR | Zbl
[5] B. C. Berndt, “Modular equations in Ramanujan's lost notebook”, Number Theory, Hindustan Book, New Delhi, 1999, 55–74 | MR | Zbl
[6] Ch. Adiga, K. R. Vasuki, M. S. Mahadeva Naika, “Some new explicit evaluations of Ramanujan's cubic continued fraction”, New Zealand J. Math., 31:2 (2002), 109–114 | MR | Zbl
[7] Ch. Adiga, K. Shivashankara, K. R. Vasuki, “Some theta function identities and new explicit evaluation of Rogers–Ramanujan continued fraction”, Tamsui Oxf. J. Math. Sci., 18:1 (2002), 101–117 | MR | Zbl
[8] N. D. Baruah, N. Saikia, “Some general theorems on the explicit evaluations of Ramanujan's cubic continued fraction”, J. Comput. Appl. Math., 160:1-2 (2003), 37–51 | DOI | MR | Zbl
[9] S. Bhargava, K. R. Vasuki, T. G. Sreeramamurthy, “Some evaluations of Ramanujan's cubic continued fraction”, Indian J. of Pure appl. Math., 35 (2004), 1003–1025 | MR | Zbl
[10] S.-Y. Kang, “Ramanujan's formulas for explicit evaluation of the Rogers–Ramanujan continued fraction and theta-functions”, Acta Arith., 90:1 (1999), 49–68 | MR | Zbl
[11] M. S. Mahadeva Naika, B. N. Dharmendra, “On Some new general Theorem for the explicit evaluations of Ramanujan's remarkable product of theta-function”, Ramanujan J., 15:3 (2008), 349–366 | DOI | MR | Zbl
[12] K. R. Vasuki, K. Shivashankara, “A note on explicit evaluations of products and ratios of class invariants”, Math. Forum, 13 (2000), 45–46 | MR
[13] K. R. Vasuki, T. G. Sreeramamurthy, “A note on explicit evaluations of Ramanujan's continued fraction”, Adv. Stud. Contemp. Math. (Kyungshang), 9:1 (2004), 63–80 | MR | Zbl
[14] K. R. Vasuki, B. R. Srivatsa Kumar, “Evaluations of the Ramanujan–Göllnitz–Gordon continued fraction $H(q)$ by modular equations”, Indian J. Math., 48:3 (2006), 275–300 | MR | Zbl
[15] J. Yi, “Evaluations of the Rogers–Ramanujan's continued fraction $R(q)$ by modular equations”, Acta. Arith., 97:2 (2001), 103–127 | DOI | MR | Zbl
[16] S. Bhargava, Ch. Adiga, M. S. M. Naika, “A new class of modular equations in Ramanujan's alternative theory of elliptic functions of signature $4$ and some new $P$-$Q$ eta fuction identities”, Indian. J. Math., 45:1 (2003), 23–39 | MR | Zbl
[17] B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, New York, 1994 | MR | Zbl
[18] K. R. Vasuki, T. G. Sreeramamurthy, “Certain new Ramanujan's Schläfli-type mixed modular equations”, J. Math. Anal. Appl., 309:1 (2005), 238–255 | DOI | MR | Zbl
[19] L. Schläfli, “Beweis der Hermiteschen Verwandlungstafeln für elliptischen modularfunction”, J. Reine Angew. Math., 1870:72 (1870), 360–369 | DOI
[20] R. Russell, “On modular equations”, Proc. London Math. Soc., 21 (1889), 351–395 | DOI | MR | Zbl
[21] B. C. Berndt, Ramanujan's Notebooks, Part V, Springer–Verlag, New York, 1998 | MR | Zbl
[22] H. Weber, “Zur Theorie der elliptischen Functionen”, Acta Math., 11:1-4 (1887), 333–390 | DOI | MR | Zbl
[23] B. C. Berndt, S. Bhargava, F. G. Garvan, “Ramanujan's theories of elliptic functions to alternative bases”, Trans. Amer. Math. Soc., 347:11 (1995), 4163–4244 | MR | Zbl
[24] H. H. Chan, W.-C. Liaw, “Cubic modular equations and new Ramanujan-type series for $1/\pi$”, Pacific J. Math., 192:2 (2000), 219–238 | DOI | MR | Zbl
[25] M. S. Mahadeva Naika, “On some cubic Russell-type mixed modular equations”, Adv. Stud. Contemp. Math. (Kyungshang), 10:2 (2005), 219–231 | MR | Zbl