Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 666-684.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sharp Jackson–Stechkin type inequalities on the sets $L^r_{2,\rho}(\mathbb{R})$ in which the values of best polynomial approximations are estimated from above via both the moduli of continuity of $m$th order and $K$-functionals of $r$th derivatives. For function classes defined by these characteristics, the exact values of various widths are calculated in the space $L_{2,\rho}(\mathbb{R})$. Also, for the classes $W^r_{2,\rho}(\mathbb{K}_m,\Psi)$, where $r=2,3,\dots$, the exact values of the best polynomial approximations of the intermediate derivatives $f^{(\nu)}$, $\nu=1,\dots,r-1$, are obtained in $L_{2,\rho}(\mathbb{R})$.
Keywords: mean approximation by algebraic polynomials, Jackson–Stechkin type inequalities, Chebyshev–Hermite weight, width of a function class, Fourier–Hermite series, modulus of continuity, Hölder's inequality.
@article{MZM_2014_95_5_a3,
     author = {S. B. Vakarchuk},
     title = {Mean {Approximation} of {Functions} on the {Real} {Axis} by {Algebraic} {Polynomials} with {Chebyshev--Hermite} {Weight} and {Widths} of {Function} {Classes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {666--684},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes
JO  - Matematičeskie zametki
PY  - 2014
SP  - 666
EP  - 684
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/
LA  - ru
ID  - MZM_2014_95_5_a3
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes
%J Matematičeskie zametki
%D 2014
%P 666-684
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/
%G ru
%F MZM_2014_95_5_a3
S. B. Vakarchuk. Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 666-684. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/

[1] S. Z. Rafalson, “O priblizhenii funktsii v srednem summami Fure–Ermita”, Izv. vuzov. Matem., 1968, no. 7, 78–84 | MR | Zbl

[2] G. Froid, “Ob approksimatsii s vesom algebraicheskimi mnogochlenami na deistvitelnoi osi”, Dokl. AN SSSR, 191:2 (1970), 293–294 | MR

[3] V. A. Abilov, “O poryadke priblizheniya nepreryvnykh funktsii arifmeticheskimi srednimi chastnykh summ ryada Fure–Ermita”, Izv. vuzov. Matem., 1972, no. 3, 3–9 | MR | Zbl

[4] V. M. Fedorov, “Priblizhenie algebraicheskimi mnogochlenami s vesom Chebysheva–Ermita”, Izv. vuzov. Matem., 1984, no. 6, 55–63 | MR | Zbl

[5] D. V. Alekseev, “Priblizhenie polinomami s vesom Chebysheva–Ermita na deistvitelnoi osi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1997, no. 6, 68–71 | Zbl

[6] H. N. Mhaskar, “Weighted polynomial approximation”, J. Approx. Theory, 46:1 (1986), 100–110 | DOI | MR | Zbl

[7] Z. Ditzian, V. Totik, “$K$-functionals and best polynomial approximation in weighted $L^p(\mathbb{R})$”, J. Approx. Theory, 46:1 (1986), 38–41 | DOI | MR | Zbl

[8] N. P. Korneichuk, “O tochnoi konstante v neravenstve Dzheksona dlya nepreryvnykh periodicheskikh funktsii”, Matem. zametki, 32:5 (1982), 669–674 | MR | Zbl

[9] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl

[10] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[11] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl

[12] V. A. Yudin, “Diofantovy priblizheniya v ekstremalnykh zadachakh $L_2$”, Dokl. AN SSSR, 251:1 (1980), 54–57 | Zbl

[13] A. G. Babenko, “Tochnoe neravenstvo Dzheksona–Stechkina dlya $L^2$-priblizhenii na otrezke s vesom Yakobi i proektivnykh prostranstvakh”, Izv. RAN. Ser. matem., 62:6 (1998), 27–52 | DOI | MR | Zbl

[14] V. I. Ivanov, O. I. Smirnov, Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L_p$, Tulskii gos. un-t, Tula, 1995

[15] V. V. Arestov, V. Yu. Popov, “Neravenstva Dzheksona na sfere v $L_2$”, Izv. vuzov. Matem., 1995, no. 8, 13–20 | MR | Zbl

[16] S. B. Vakarchuk, “Neravenstva tipa Dzheksona i poperechniki klassov funktsii v $L_2$”, Matem. zametki, 80:1 (2006), 11–19 | DOI | MR | Zbl

[17] S. B. Vakarchuk, V. I. Zabutnaya, “Tochnoe neravenstvo tipa Dzheksona–Stechkina v $L_2$ i poperechniki funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | DOI | MR | Zbl

[18] A. A. Abilov, “Otsenka poperechnika odnogo klassa funktsii v prostranstve $L_2$”, Matem. zametki, 52:1 (1992), 3–8 | MR | Zbl

[19] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl

[20] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[21] S. B. Vakarchuk, “$K$-funktsionaly i tochnye znacheniya $n$-poperechnikov nekotorykh klassov iz $L_2$”, Matem. zametki, 66:4 (1999), 494–499 | DOI | MR

[22] S. B. Vakarchuk, “O $K$-funktsionalakh i tochnykh znacheniyakh $n$-poperechnikov nekotorykh klassov v prostranstvakh $C(2\pi)$ i $L_1(2\pi)$”, Matem. zametki, 71:4 (2002), 522–531 | DOI | MR | Zbl

[23] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[24] H. Lebesque, “Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | MR

[25] V. A. Abilov, “O koeffitsientakh ryada Fure–Ermita nepreryvnykh funktsii”, Izv. vuzov. Matem., 1969, no. 12, 3–8 | MR | Zbl

[26] I. A. Shevchuk, Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992

[27] I. V. Berdnikova, S. Z. Rafalson, “Nekotorye neravenstva mezhdu normami funktsii i ee proizvodnykh v integralnykh metrikakh”, Izv. vuzov. Matem., 1985, no. 12, 3–6 | MR | Zbl