Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev–Hermite Weight and Widths of Function Classes
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 666-684 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain sharp Jackson–Stechkin type inequalities on the sets $L^r_{2,\rho}(\mathbb{R})$ in which the values of best polynomial approximations are estimated from above via both the moduli of continuity of $m$th order and $K$-functionals of $r$th derivatives. For function classes defined by these characteristics, the exact values of various widths are calculated in the space $L_{2,\rho}(\mathbb{R})$. Also, for the classes $W^r_{2,\rho}(\mathbb{K}_m,\Psi)$, where $r=2,3,\dots$, the exact values of the best polynomial approximations of the intermediate derivatives $f^{(\nu)}$, $\nu=1,\dots,r-1$, are obtained in $L_{2,\rho}(\mathbb{R})$.
Keywords: mean approximation by algebraic polynomials, Jackson–Stechkin type inequalities, Chebyshev–Hermite weight, width of a function class, Fourier–Hermite series, modulus of continuity
Mots-clés : Hölder's inequality.
@article{MZM_2014_95_5_a3,
     author = {S. B. Vakarchuk},
     title = {Mean {Approximation} of {Functions} on the {Real} {Axis} by {Algebraic} {Polynomials} with {Chebyshev{\textendash}Hermite} {Weight} and {Widths} of {Function} {Classes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {666--684},
     year = {2014},
     volume = {95},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev–Hermite Weight and Widths of Function Classes
JO  - Matematičeskie zametki
PY  - 2014
SP  - 666
EP  - 684
VL  - 95
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/
LA  - ru
ID  - MZM_2014_95_5_a3
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev–Hermite Weight and Widths of Function Classes
%J Matematičeskie zametki
%D 2014
%P 666-684
%V 95
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/
%G ru
%F MZM_2014_95_5_a3
S. B. Vakarchuk. Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev–Hermite Weight and Widths of Function Classes. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 666-684. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/

[1] S. Z. Rafalson, “O priblizhenii funktsii v srednem summami Fure–Ermita”, Izv. vuzov. Matem., 1968, no. 7, 78–84 | MR | Zbl

[2] G. Froid, “Ob approksimatsii s vesom algebraicheskimi mnogochlenami na deistvitelnoi osi”, Dokl. AN SSSR, 191:2 (1970), 293–294 | MR

[3] V. A. Abilov, “O poryadke priblizheniya nepreryvnykh funktsii arifmeticheskimi srednimi chastnykh summ ryada Fure–Ermita”, Izv. vuzov. Matem., 1972, no. 3, 3–9 | MR | Zbl

[4] V. M. Fedorov, “Priblizhenie algebraicheskimi mnogochlenami s vesom Chebysheva–Ermita”, Izv. vuzov. Matem., 1984, no. 6, 55–63 | MR | Zbl

[5] D. V. Alekseev, “Priblizhenie polinomami s vesom Chebysheva–Ermita na deistvitelnoi osi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1997, no. 6, 68–71 | Zbl

[6] H. N. Mhaskar, “Weighted polynomial approximation”, J. Approx. Theory, 46:1 (1986), 100–110 | DOI | MR | Zbl

[7] Z. Ditzian, V. Totik, “$K$-functionals and best polynomial approximation in weighted $L^p(\mathbb{R})$”, J. Approx. Theory, 46:1 (1986), 38–41 | DOI | MR | Zbl

[8] N. P. Korneichuk, “O tochnoi konstante v neravenstve Dzheksona dlya nepreryvnykh periodicheskikh funktsii”, Matem. zametki, 32:5 (1982), 669–674 | MR | Zbl

[9] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl

[10] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[11] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl

[12] V. A. Yudin, “Diofantovy priblizheniya v ekstremalnykh zadachakh $L_2$”, Dokl. AN SSSR, 251:1 (1980), 54–57 | Zbl

[13] A. G. Babenko, “Tochnoe neravenstvo Dzheksona–Stechkina dlya $L^2$-priblizhenii na otrezke s vesom Yakobi i proektivnykh prostranstvakh”, Izv. RAN. Ser. matem., 62:6 (1998), 27–52 | DOI | MR | Zbl

[14] V. I. Ivanov, O. I. Smirnov, Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L_p$, Tulskii gos. un-t, Tula, 1995

[15] V. V. Arestov, V. Yu. Popov, “Neravenstva Dzheksona na sfere v $L_2$”, Izv. vuzov. Matem., 1995, no. 8, 13–20 | MR | Zbl

[16] S. B. Vakarchuk, “Neravenstva tipa Dzheksona i poperechniki klassov funktsii v $L_2$”, Matem. zametki, 80:1 (2006), 11–19 | DOI | MR | Zbl

[17] S. B. Vakarchuk, V. I. Zabutnaya, “Tochnoe neravenstvo tipa Dzheksona–Stechkina v $L_2$ i poperechniki funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | DOI | MR | Zbl

[18] A. A. Abilov, “Otsenka poperechnika odnogo klassa funktsii v prostranstve $L_2$”, Matem. zametki, 52:1 (1992), 3–8 | MR | Zbl

[19] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl

[20] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[21] S. B. Vakarchuk, “$K$-funktsionaly i tochnye znacheniya $n$-poperechnikov nekotorykh klassov iz $L_2$”, Matem. zametki, 66:4 (1999), 494–499 | DOI | MR

[22] S. B. Vakarchuk, “O $K$-funktsionalakh i tochnykh znacheniyakh $n$-poperechnikov nekotorykh klassov v prostranstvakh $C(2\pi)$ i $L_1(2\pi)$”, Matem. zametki, 71:4 (2002), 522–531 | DOI | MR | Zbl

[23] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[24] H. Lebesque, “Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | MR

[25] V. A. Abilov, “O koeffitsientakh ryada Fure–Ermita nepreryvnykh funktsii”, Izv. vuzov. Matem., 1969, no. 12, 3–8 | MR | Zbl

[26] I. A. Shevchuk, Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992

[27] I. V. Berdnikova, S. Z. Rafalson, “Nekotorye neravenstva mezhdu normami funktsii i ee proizvodnykh v integralnykh metrikakh”, Izv. vuzov. Matem., 1985, no. 12, 3–6 | MR | Zbl