Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 666-684

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sharp Jackson–Stechkin type inequalities on the sets $L^r_{2,\rho}(\mathbb{R})$ in which the values of best polynomial approximations are estimated from above via both the moduli of continuity of $m$th order and $K$-functionals of $r$th derivatives. For function classes defined by these characteristics, the exact values of various widths are calculated in the space $L_{2,\rho}(\mathbb{R})$. Also, for the classes $W^r_{2,\rho}(\mathbb{K}_m,\Psi)$, where $r=2,3,\dots$, the exact values of the best polynomial approximations of the intermediate derivatives $f^{(\nu)}$, $\nu=1,\dots,r-1$, are obtained in $L_{2,\rho}(\mathbb{R})$.
Keywords: mean approximation by algebraic polynomials, Jackson–Stechkin type inequalities, Chebyshev–Hermite weight, width of a function class, Fourier–Hermite series, modulus of continuity, Hölder's inequality.
@article{MZM_2014_95_5_a3,
     author = {S. B. Vakarchuk},
     title = {Mean {Approximation} of {Functions} on the {Real} {Axis} by {Algebraic} {Polynomials} with {Chebyshev--Hermite} {Weight} and {Widths} of {Function} {Classes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {666--684},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes
JO  - Matematičeskie zametki
PY  - 2014
SP  - 666
EP  - 684
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/
LA  - ru
ID  - MZM_2014_95_5_a3
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes
%J Matematičeskie zametki
%D 2014
%P 666-684
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/
%G ru
%F MZM_2014_95_5_a3
S. B. Vakarchuk. Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 666-684. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/