Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_5_a3, author = {S. B. Vakarchuk}, title = {Mean {Approximation} of {Functions} on the {Real} {Axis} by {Algebraic} {Polynomials} with {Chebyshev--Hermite} {Weight} and {Widths} of {Function} {Classes}}, journal = {Matemati\v{c}eskie zametki}, pages = {666--684}, publisher = {mathdoc}, volume = {95}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/} }
TY - JOUR AU - S. B. Vakarchuk TI - Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes JO - Matematičeskie zametki PY - 2014 SP - 666 EP - 684 VL - 95 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/ LA - ru ID - MZM_2014_95_5_a3 ER -
%0 Journal Article %A S. B. Vakarchuk %T Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes %J Matematičeskie zametki %D 2014 %P 666-684 %V 95 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/ %G ru %F MZM_2014_95_5_a3
S. B. Vakarchuk. Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev--Hermite Weight and Widths of Function Classes. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 666-684. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a3/
[1] S. Z. Rafalson, “O priblizhenii funktsii v srednem summami Fure–Ermita”, Izv. vuzov. Matem., 1968, no. 7, 78–84 | MR | Zbl
[2] G. Froid, “Ob approksimatsii s vesom algebraicheskimi mnogochlenami na deistvitelnoi osi”, Dokl. AN SSSR, 191:2 (1970), 293–294 | MR
[3] V. A. Abilov, “O poryadke priblizheniya nepreryvnykh funktsii arifmeticheskimi srednimi chastnykh summ ryada Fure–Ermita”, Izv. vuzov. Matem., 1972, no. 3, 3–9 | MR | Zbl
[4] V. M. Fedorov, “Priblizhenie algebraicheskimi mnogochlenami s vesom Chebysheva–Ermita”, Izv. vuzov. Matem., 1984, no. 6, 55–63 | MR | Zbl
[5] D. V. Alekseev, “Priblizhenie polinomami s vesom Chebysheva–Ermita na deistvitelnoi osi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1997, no. 6, 68–71 | Zbl
[6] H. N. Mhaskar, “Weighted polynomial approximation”, J. Approx. Theory, 46:1 (1986), 100–110 | DOI | MR | Zbl
[7] Z. Ditzian, V. Totik, “$K$-functionals and best polynomial approximation in weighted $L^p(\mathbb{R})$”, J. Approx. Theory, 46:1 (1986), 38–41 | DOI | MR | Zbl
[8] N. P. Korneichuk, “O tochnoi konstante v neravenstve Dzheksona dlya nepreryvnykh periodicheskikh funktsii”, Matem. zametki, 32:5 (1982), 669–674 | MR | Zbl
[9] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl
[10] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl
[11] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl
[12] V. A. Yudin, “Diofantovy priblizheniya v ekstremalnykh zadachakh $L_2$”, Dokl. AN SSSR, 251:1 (1980), 54–57 | Zbl
[13] A. G. Babenko, “Tochnoe neravenstvo Dzheksona–Stechkina dlya $L^2$-priblizhenii na otrezke s vesom Yakobi i proektivnykh prostranstvakh”, Izv. RAN. Ser. matem., 62:6 (1998), 27–52 | DOI | MR | Zbl
[14] V. I. Ivanov, O. I. Smirnov, Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L_p$, Tulskii gos. un-t, Tula, 1995
[15] V. V. Arestov, V. Yu. Popov, “Neravenstva Dzheksona na sfere v $L_2$”, Izv. vuzov. Matem., 1995, no. 8, 13–20 | MR | Zbl
[16] S. B. Vakarchuk, “Neravenstva tipa Dzheksona i poperechniki klassov funktsii v $L_2$”, Matem. zametki, 80:1 (2006), 11–19 | DOI | MR | Zbl
[17] S. B. Vakarchuk, V. I. Zabutnaya, “Tochnoe neravenstvo tipa Dzheksona–Stechkina v $L_2$ i poperechniki funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | DOI | MR | Zbl
[18] A. A. Abilov, “Otsenka poperechnika odnogo klassa funktsii v prostranstve $L_2$”, Matem. zametki, 52:1 (1992), 3–8 | MR | Zbl
[19] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl
[20] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR
[21] S. B. Vakarchuk, “$K$-funktsionaly i tochnye znacheniya $n$-poperechnikov nekotorykh klassov iz $L_2$”, Matem. zametki, 66:4 (1999), 494–499 | DOI | MR
[22] S. B. Vakarchuk, “O $K$-funktsionalakh i tochnykh znacheniyakh $n$-poperechnikov nekotorykh klassov v prostranstvakh $C(2\pi)$ i $L_1(2\pi)$”, Matem. zametki, 71:4 (2002), 522–531 | DOI | MR | Zbl
[23] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR
[24] H. Lebesque, “Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | MR
[25] V. A. Abilov, “O koeffitsientakh ryada Fure–Ermita nepreryvnykh funktsii”, Izv. vuzov. Matem., 1969, no. 12, 3–8 | MR | Zbl
[26] I. A. Shevchuk, Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992
[27] I. V. Berdnikova, S. Z. Rafalson, “Nekotorye neravenstva mezhdu normami funktsii i ee proizvodnykh v integralnykh metrikakh”, Izv. vuzov. Matem., 1985, no. 12, 3–6 | MR | Zbl