Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_4_a7, author = {D. A. Kovtonyuk and V. I. Ryazanov and R. R. Salimov and E. A. Sevost'yanov}, title = {Boundary {Behavior} of {Orlicz--Sobolev} {Classes}}, journal = {Matemati\v{c}eskie zametki}, pages = {564--576}, publisher = {mathdoc}, volume = {95}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a7/} }
TY - JOUR AU - D. A. Kovtonyuk AU - V. I. Ryazanov AU - R. R. Salimov AU - E. A. Sevost'yanov TI - Boundary Behavior of Orlicz--Sobolev Classes JO - Matematičeskie zametki PY - 2014 SP - 564 EP - 576 VL - 95 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a7/ LA - ru ID - MZM_2014_95_4_a7 ER -
D. A. Kovtonyuk; V. I. Ryazanov; R. R. Salimov; E. A. Sevost'yanov. Boundary Behavior of Orlicz--Sobolev Classes. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 564-576. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a7/
[1] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Sovremennye problemy matematiki, Fizmatlit, M., 1958 | MR | Zbl
[2] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradskogo un-ta, L., 1985 | MR | Zbl
[3] T. Iwaniec, V. Šverák, “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118:1 (1993), 181–188 | DOI | MR | Zbl
[4] T. Iwaniec, G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2001 | MR | Zbl
[5] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl
[6] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, Springer Monogr. Math., Springer-Verlag, New York, 2009 | MR | Zbl
[7] A. P. Calderón, “On the differentiability of absolutely continuous functions”, Riv. Mat. Univ. Parma, 2 (1951), 203–213 | MR | Zbl
[8] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR | Zbl
[9] S. Saks, Teoriya integrala, IL, M., 1949 | MR | Zbl
[10] J. Väisälä, “Two new characterizations for quasiconformality”, Ann. Acad. Sci. Fenn. Ser. A I Math., 362 (1965), 12 pp. | MR | Zbl
[11] A. G. Fadell, “A note on a theorem of Gehring and Lehto”, Proc. Amer. Math. Soc., 49 (1975), 195–198 | DOI | MR | Zbl
[12] F. W. Gehring, O. Lehto, “On the total differentiability of functions of a complex variable”, Ann. Acad. Sci. Fenn. Ser. A I Math., 272 (1959), 9 pp. | MR | Zbl
[13] D. Menchoff, “Sur les différencelles totales des fonctions univalentes”, Math. Ann., 105 (1931), 75–85 | DOI | MR | Zbl
[14] W. Hurewicz, H. Wallman, Dimension Theory, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, NJ, 1941 | MR | Zbl
[15] K. Kuratovskii, Topologiya, T. 1, Mir, M., 1966 | MR | Zbl
[16] F. W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl
[17] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl
[18] F. W. Gehring, O. Martio, “Quasiextremal distance domains and extension of quasiconformal mappings”, J. Anal. Math., 45 (1985), 181–206 | DOI | MR | Zbl
[19] V. Ryazanov, U. Srebro, E. Yakubov, “Integral conditions in the mapping theory”, Ukr. matem. vestnik, 7:1 (2010), 73–87 | MR
[20] D. Kovtonyuk, V. Ryazanov, “On boundary behavior of generalized quasi-isometries”, J. Anal. Math., 115:1 (2011), 103–119 | DOI | MR