Boundary Behavior of Orlicz--Sobolev Classes
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 564-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that homeomorphisms of the Orlicz–Sobolev class $W^{1,\varphi}_\rm{loc}$ can be continuously extended to the boundaries of some domains if the function $\varphi$ defining this class satisfies a Carderón-type condition and the outer dilatation $K_f$ of the mapping $f$ satisfies the divergence condition for integrals of special form. In particular, the result holds for homeomorphisms of the Sobolev classes $W^{1,1}_\rm{loc}$ with $K_f\in L^{q}_\rm{loc}$ for $q>n-1$.
Keywords: Orlicz–Sobolev class, Orlicz space, continuous extension, homeomorphic extension.
Mots-clés : outer dilatation
@article{MZM_2014_95_4_a7,
     author = {D. A. Kovtonyuk and V. I. Ryazanov and R. R. Salimov and E. A. Sevost'yanov},
     title = {Boundary {Behavior} of {Orlicz--Sobolev} {Classes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {564--576},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a7/}
}
TY  - JOUR
AU  - D. A. Kovtonyuk
AU  - V. I. Ryazanov
AU  - R. R. Salimov
AU  - E. A. Sevost'yanov
TI  - Boundary Behavior of Orlicz--Sobolev Classes
JO  - Matematičeskie zametki
PY  - 2014
SP  - 564
EP  - 576
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a7/
LA  - ru
ID  - MZM_2014_95_4_a7
ER  - 
%0 Journal Article
%A D. A. Kovtonyuk
%A V. I. Ryazanov
%A R. R. Salimov
%A E. A. Sevost'yanov
%T Boundary Behavior of Orlicz--Sobolev Classes
%J Matematičeskie zametki
%D 2014
%P 564-576
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a7/
%G ru
%F MZM_2014_95_4_a7
D. A. Kovtonyuk; V. I. Ryazanov; R. R. Salimov; E. A. Sevost'yanov. Boundary Behavior of Orlicz--Sobolev Classes. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 564-576. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a7/

[1] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Sovremennye problemy matematiki, Fizmatlit, M., 1958 | MR | Zbl

[2] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradskogo un-ta, L., 1985 | MR | Zbl

[3] T. Iwaniec, V. Šverák, “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118:1 (1993), 181–188 | DOI | MR | Zbl

[4] T. Iwaniec, G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2001 | MR | Zbl

[5] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[6] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, Springer Monogr. Math., Springer-Verlag, New York, 2009 | MR | Zbl

[7] A. P. Calderón, “On the differentiability of absolutely continuous functions”, Riv. Mat. Univ. Parma, 2 (1951), 203–213 | MR | Zbl

[8] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR | Zbl

[9] S. Saks, Teoriya integrala, IL, M., 1949 | MR | Zbl

[10] J. Väisälä, “Two new characterizations for quasiconformality”, Ann. Acad. Sci. Fenn. Ser. A I Math., 362 (1965), 12 pp. | MR | Zbl

[11] A. G. Fadell, “A note on a theorem of Gehring and Lehto”, Proc. Amer. Math. Soc., 49 (1975), 195–198 | DOI | MR | Zbl

[12] F. W. Gehring, O. Lehto, “On the total differentiability of functions of a complex variable”, Ann. Acad. Sci. Fenn. Ser. A I Math., 272 (1959), 9 pp. | MR | Zbl

[13] D. Menchoff, “Sur les différencelles totales des fonctions univalentes”, Math. Ann., 105 (1931), 75–85 | DOI | MR | Zbl

[14] W. Hurewicz, H. Wallman, Dimension Theory, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, NJ, 1941 | MR | Zbl

[15] K. Kuratovskii, Topologiya, T. 1, Mir, M., 1966 | MR | Zbl

[16] F. W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl

[17] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl

[18] F. W. Gehring, O. Martio, “Quasiextremal distance domains and extension of quasiconformal mappings”, J. Anal. Math., 45 (1985), 181–206 | DOI | MR | Zbl

[19] V. Ryazanov, U. Srebro, E. Yakubov, “Integral conditions in the mapping theory”, Ukr. matem. vestnik, 7:1 (2010), 73–87 | MR

[20] D. Kovtonyuk, V. Ryazanov, “On boundary behavior of generalized quasi-isometries”, J. Anal. Math., 115:1 (2011), 103–119 | DOI | MR