On the Spectrum of Well-Defined Restrictions and Extensions for the Laplace Operator
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 507-516

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of the spectral properties of operators generated by differential equations of hyperbolic or parabolic type with Cauchy initial data involve, as a rule, Volterra boundary-value problems that are well posed. But Hadamard's example shows that the Cauchy problem for the Laplace equation is ill posed. At present, not a single Volterra well-defined restriction or extension for elliptic-type equations is known. Thus, the following question arises: Does there exist a Volterra well-defined restriction of a maximal operator $\widehat{L}$ or a Volterra well-defined extension of a minimal operator $L_0$ generated by the Laplace operator? In the present paper, for a wide class of well-defined restrictions of the maximal operator $\widehat{L}$ and of well-defined extensions of the minimal operator $L_0$ generated by the Laplace operator, we prove a theorem stating that they cannot be Volterra.
Keywords: Laplace operator, maximal (minimal) operator, Volterra operator, Volterra well-defined restrictions and extensions of operators, Hilbert space, elliptic operator, Poisson operator.
@article{MZM_2014_95_4_a2,
     author = {B. N. Biyarov},
     title = {On the {Spectrum} of {Well-Defined} {Restrictions} and {Extensions} for the {Laplace} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {507--516},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a2/}
}
TY  - JOUR
AU  - B. N. Biyarov
TI  - On the Spectrum of Well-Defined Restrictions and Extensions for the Laplace Operator
JO  - Matematičeskie zametki
PY  - 2014
SP  - 507
EP  - 516
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a2/
LA  - ru
ID  - MZM_2014_95_4_a2
ER  - 
%0 Journal Article
%A B. N. Biyarov
%T On the Spectrum of Well-Defined Restrictions and Extensions for the Laplace Operator
%J Matematičeskie zametki
%D 2014
%P 507-516
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a2/
%G ru
%F MZM_2014_95_4_a2
B. N. Biyarov. On the Spectrum of Well-Defined Restrictions and Extensions for the Laplace Operator. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 507-516. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a2/