Blow-Up in Systems with Nonlinear Viscosity
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 615-629

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the blow-up of solutions of the hydrodynamic systems proposed by Ladyzhenskaya in 1966 with nonlinear viscosity and exterior sources are obtained. Questions relating to local solvability and uniqueness are answered using the finite-dimensional Galerkin approximation method The energy method, which was first applied to hydrodynamic systems by Korpusov and Sveshnikov, is used to obtain estimates of the blow-up time and blow-up rate. The determining role of nonlinear exterior sources, not viscous or hydrodynamic nonlinearity, on the occurrence of the blow-up effect is shown.
Keywords: hydrodynamic system with nonlinear viscosity, blow-up of solutions, Navier–Stokes system, nonlinear source, energy method, Galerkin approximation method, Banach space, Gronwall–Bellman lemma.
@article{MZM_2014_95_4_a11,
     author = {E. V. Yushkov},
     title = {Blow-Up in {Systems} with {Nonlinear} {Viscosity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {615--629},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a11/}
}
TY  - JOUR
AU  - E. V. Yushkov
TI  - Blow-Up in Systems with Nonlinear Viscosity
JO  - Matematičeskie zametki
PY  - 2014
SP  - 615
EP  - 629
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a11/
LA  - ru
ID  - MZM_2014_95_4_a11
ER  - 
%0 Journal Article
%A E. V. Yushkov
%T Blow-Up in Systems with Nonlinear Viscosity
%J Matematičeskie zametki
%D 2014
%P 615-629
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a11/
%G ru
%F MZM_2014_95_4_a11
E. V. Yushkov. Blow-Up in Systems with Nonlinear Viscosity. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 615-629. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a11/