Blow-Up in Systems with Nonlinear Viscosity
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 615-629.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the blow-up of solutions of the hydrodynamic systems proposed by Ladyzhenskaya in 1966 with nonlinear viscosity and exterior sources are obtained. Questions relating to local solvability and uniqueness are answered using the finite-dimensional Galerkin approximation method The energy method, which was first applied to hydrodynamic systems by Korpusov and Sveshnikov, is used to obtain estimates of the blow-up time and blow-up rate. The determining role of nonlinear exterior sources, not viscous or hydrodynamic nonlinearity, on the occurrence of the blow-up effect is shown.
Keywords: hydrodynamic system with nonlinear viscosity, blow-up of solutions, Navier–Stokes system, nonlinear source, energy method, Galerkin approximation method, Banach space, Gronwall–Bellman lemma.
@article{MZM_2014_95_4_a11,
     author = {E. V. Yushkov},
     title = {Blow-Up in {Systems} with {Nonlinear} {Viscosity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {615--629},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a11/}
}
TY  - JOUR
AU  - E. V. Yushkov
TI  - Blow-Up in Systems with Nonlinear Viscosity
JO  - Matematičeskie zametki
PY  - 2014
SP  - 615
EP  - 629
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a11/
LA  - ru
ID  - MZM_2014_95_4_a11
ER  - 
%0 Journal Article
%A E. V. Yushkov
%T Blow-Up in Systems with Nonlinear Viscosity
%J Matematičeskie zametki
%D 2014
%P 615-629
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a11/
%G ru
%F MZM_2014_95_4_a11
E. V. Yushkov. Blow-Up in Systems with Nonlinear Viscosity. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 615-629. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a11/

[1] M. O. Korpusov, A. G. Sveshnikov, “O razrushenii resheniya sistemy uravnenii Oskolkova”, Matem. sb., 200:4 (2009), 83–108 | DOI | MR | Zbl

[2] J. T. Beale, T. Kato, A. Majada, “Remarks on the breakdown of smooth solutions for the 3-D Euler equation”, Comm. Math. Phys., 94:1 (1984), 61–66 | MR | Zbl

[3] S. Friedlander, N. Pavlović, “Blowup in a three-dimensional vector model for the Euler equations”, Comm. Pure Appl. Math., 57:6 (2004), 705–725 | DOI | MR | Zbl

[4] E. V. Yushkov, “O razrushenii resheniya nelokalnoi sistemy uravnenii gidrodinamicheskogo tipa”, Izv. RAN. Ser. matem., 76:1 (2012), 201–224 | DOI | MR | Zbl

[5] E. V. Yushkov, “O razrushenii reshenii zadach gidrodinamicheskogo tipa s singulyarnym istochnikom”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1523–1535

[6] A. P. Oskolkov, “O nekotorykh nestatsionarnykh lineinykh i kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 9, Zap. nauchn. sem. LOMI, 59, Izd-vo «Nauka», Leningrad. otd., L., 1976, 133–177 | MR | Zbl

[7] O. A. Ladyzhenskaya, “O novykh uravneniyakh dlya opisaniya dvizhenii vyazkikh neszhimaemykh zhidkostei i razreshimosti v tselom dlya nikh kraevykh zadach”, Kraevye zadachi matematicheskoi fiziki. 5, Tr. MIAN SSSR, 102, 1967, 85–104 | MR | Zbl

[8] V. K. Kalantarov, O. A. Ladyzhenskaya, “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 10, Zap. nauchn. sem. LOMI, 69, Izd-vo «Nauka», Leningrad. otd., L., 1977, 77–102 | MR | Zbl

[9] M. O. Korpusov, A. G. Sveshnikov, Nelineinyi funktsionalnyi analiz i matematicheskoe modelirovanie v fizike. Geometricheskie i topologicheskie svoistva lineinykh prostranstv, KRASAND, M., 2011

[10] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR | Zbl

[11] F. E. Browder, “Existence and uniqueness theorems for solutions of nonlinear boundary value problems”, Proc. Sympos. Appl. Math., 17, Amer. Math. Soc., Providence, RI, 1965, 24–49 | MR | Zbl