The Hopfian Property of $n$-Periodic Products of Groups
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 483-491.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a subgroup of a group $G$. A normal subgroup $N_H$ of $H$ is said to be inheritably normal if there is a normal subgroup $N_G$ of $G$ such that $N_H=N_G\cap H$. It is proved in the paper that a subgroup $N_{G_i}$ of a factor $G_i$ of the $n$-periodic product $\prod_{i\in I}^nG_i$ with nontrivial factors $G_i$ is an inheritably normal subgroup if and only if $N_{G_i}$ contains the subgroup $G_i^n$. It is also proved that for odd $n\ge 665$ every nontrivial normal subgroup in a given $n$-periodic product $G=\prod_{i\in I}^nG_i$ contains the subgroup $G^n$. It follows that almost all $n$-periodic products $G=G_1\overset{n}{\ast}G_2$ are Hopfian, i.e., they are not isomorphic to any of their proper quotient groups. This allows one to construct nonsimple and not residually finite Hopfian groups of bounded exponents.
Keywords: Hopfian group, $n$-periodic product, periodic group, inheritably normal subgroup.
@article{MZM_2014_95_4_a0,
     author = {S. I. Adian and V. S. Atabekyan},
     title = {The {Hopfian} {Property} of $n${-Periodic} {Products} of {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--491},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a0/}
}
TY  - JOUR
AU  - S. I. Adian
AU  - V. S. Atabekyan
TI  - The Hopfian Property of $n$-Periodic Products of Groups
JO  - Matematičeskie zametki
PY  - 2014
SP  - 483
EP  - 491
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a0/
LA  - ru
ID  - MZM_2014_95_4_a0
ER  - 
%0 Journal Article
%A S. I. Adian
%A V. S. Atabekyan
%T The Hopfian Property of $n$-Periodic Products of Groups
%J Matematičeskie zametki
%D 2014
%P 483-491
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a0/
%G ru
%F MZM_2014_95_4_a0
S. I. Adian; V. S. Atabekyan. The Hopfian Property of $n$-Periodic Products of Groups. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 483-491. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a0/

[1] S. I. Adyan, “Periodicheskie proizvedeniya grupp”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 142, 1976, 3–21 | MR | Zbl

[2] S. I. Adyan, “Esche raz o periodicheskikh proizvedeniyakh grupp i probleme A. I. Maltseva”, Matem. zametki, 88:6 (2010), 803–810 | DOI | MR

[3] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[4] P. S. Novikov, S. I. Adyan, “O beskonechnykh periodicheskikh gruppakh. I”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 | MR | Zbl

[5] S. I. Adyan, “O prostote periodicheskikh proizvedenii grupp”, Dokl. AN SSSR, 241:4 (1978), 745–748 | MR | Zbl

[6] B. H. Neumann, “An essay on free products of groups with amalgamations”, Philos. Trans. Roy. Soc. London. Ser. A, 246:919 (1954), 503–554 | DOI | MR | Zbl

[7] B. H. Neumann, H. Neumann, “Embedding theorems for groups”, J. London Math. Soc., 34 (1959), 465–479 | MR | Zbl

[8] V. S. Atabekyan, “O normalnykh podgruppakh v periodicheskikh proizvedeniyakh S. I. Adyana”, Algoritmicheskie voprosy algebry i logiki, Tr. MIAN, 274, MAIK, M., 2011, 15–31 | MR

[9] V. S. Atabekyan, “O CEP-podgruppakh $n$-periodicheskikh proizvedenii”, Izv. NAN Armenii. Matem., 46:5 (2011), 15–24 | MR

[10] Yu. G. Kleiman, “O tozhdestvakh v gruppakh”, Tr. MMO, 44, Izd-vo Mosk. un-ta, M., 1982, 62–108 | MR | Zbl

[11] E. I. Zelmanov, “Reshenie oslablennoi problemy Bernsaida dlya grupp nechetnogo pokazatelya”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 42–59 | MR | Zbl