Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 417-432.

Voir la notice de l'article provenant de la source Math-Net.Ru

Magnetic fields in conducting liquids (in particular, magnetic fields of galaxies, stars, and planets) are described by the magnetic induction operator. In this paper, we study the spectrum and eigenfunctions of this operator on a compact two-dimensional surface of revolution. For large magnetic Reynolds numbers, the asymptotics of the spectrum is studied; equations defining the eigenvalues (quantization conditions) are obtained; and examples of spectral graphs near which these points are located are given. The spatial structure of the eigenfunctions is studied.
Keywords: magnetic induction operator, two-dimensional surface of revolution, spectral graph, Stokes line, Reynolds number, turning point, WKB asymptotics
Mots-clés : quantization conditions, monodromy matrix.
@article{MZM_2014_95_3_a8,
     author = {A. I. Esina and A. I. Shafarevich},
     title = {Asymptotics of the {Spectrum} and {Eigenfunctions} of the {Magnetic} {Induction} {Operator} on a {Compact} {Two-Dimensional} {Surface} of {Revolution}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {417--432},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a8/}
}
TY  - JOUR
AU  - A. I. Esina
AU  - A. I. Shafarevich
TI  - Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution
JO  - Matematičeskie zametki
PY  - 2014
SP  - 417
EP  - 432
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a8/
LA  - ru
ID  - MZM_2014_95_3_a8
ER  - 
%0 Journal Article
%A A. I. Esina
%A A. I. Shafarevich
%T Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution
%J Matematičeskie zametki
%D 2014
%P 417-432
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a8/
%G ru
%F MZM_2014_95_3_a8
A. I. Esina; A. I. Shafarevich. Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 417-432. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a8/

[1] A. A. Arzhanov, S. A. Stepin, “Kvaziklassicheskie spektralnye asimptotiki i yavlenie Stoksa dlya uravneniya Vebera”, Dokl. RAN, 378:1 (2001), 18–21 | MR | Zbl

[2] C. V. Galtsev, A. I. Shafarevich, “Spektr i psevdospektr nesamosopryazhennogo operatora Shredingera s periodicheskimi koeffitsientami”, Matem. zametki, 80:3 (2006), 356–366 | DOI | MR | Zbl

[3] C. V. Galtsev, A. I. Shafarevich, “Kvantovannye rimanovy poverkhnosti i kvaziklassicheskie spektralnye serii dlya nesamosopryazhennogo operatora Shredingera s periodicheskimi koeffitsientami”, TMF, 148:2 (2006), 206–226 | DOI | MR | Zbl

[4] C. A. Stepin, “Nesamosopryazhennye singulyarnye vozmuscheniya: model perekhoda ot diskretnogo spektra k nepreryvnomu”, UMN, 50:6 (1995), 219–220 | MR | Zbl

[5] A. V. Dyachenko, A. A. Shkalikov, “O modelnoi zadache dlya uravneniya Orra–{\allowbreak}Zommerfelda s lineinym profilem”, Funkts. analiz i ego pril., 36:3 (2002), 71–75 | DOI | MR | Zbl

[6] A. I. Esina, A. I. Shafarevich, “Usloviya kvantovaniya na rimanovykh poverkhnostyakh i kvaziklassicheskii spektr operatora Shredingera s kompleksnym potentsialom”, Matem. zametki, 88:2 (2010), 229–248 | DOI | MR

[7] S. N. Tumanov, A. A. Shkalikov, “O predelnom povedenii spektra modelnoi zadachi dlya uravneniya Orra–Zommerfelda s profilem Puazeilya”, Izv. RAN. Ser. matem., 66:4 (2002), 177–204 | DOI | MR | Zbl

[8] A. A. Shkalikov, “O predelnom povedenii spektra pri bolshikh znacheniyakh parametra odnoi modelnoi zadachi”, Matem. zametki, 62:6 (1997), 950–953 | DOI | MR | Zbl

[9] S. A. Stepin, V. A. Titov, “O kontsentratsii spektra v modelnoi zadache singulyarnoi teorii vozmuschenii”, Dokl. RAN, 413:1 (2007), 27–30 | MR | Zbl

[10] A. A. Shkalikov, “Spektralnye portrety operatora Orra–Zommerfelda pri bolshikh chislakh Reinoldsa”, Trudy mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam — satellita Mezhdunarodnogo kongressa matematikov ICM-2002 (Moskva, MAI, 11–17 avgusta, 2002). Chast 3, SMFN, 3, MAI, M., 2003, 89–112 | MR | Zbl

[11] H. Roohian, A. I. Shafarevich, “Semiclassical asymptotics of the spectrum of a nonselfadjoint operator on the sphere”, Russ. J. Math. Phys., 16:2 (2009), 309–314 | MR | Zbl

[12] H. Roohian, A. I. Shafarevich, “Semiclassical asymptotic behavior of the spectrum of a nonselfadjoint elliptic operator on a two-dimensional surface of revolution”, Russ. J. Math. Phys., 17:3 (2010), 328–333 | MR | Zbl

[13] V. I. Pokotilo, A. A. Shkalikov, “Kvaziklassicheskoe priblizhenie dlya nesamosopryazhennoi zadachi Shturma–Liuvillya s parabolicheskim potentsialom”, Matem. zametki, 86:3 (2009), 469–473 | DOI | MR | Zbl

[14] L. K. Kusainova, A. Zh. Monashova, A. A. Shkalikov, “Asimptotika sobstvennykh znachenii nesamosopryazhennogo differentsialnogo operatora vtorogo poryadka na osi”, Matem. zametki, 93:4 (2013), 630–633 | DOI | Zbl

[15] M. A. Evgrafov, M. V. Fedoryuk, “Asimptotika reshenii uravneniya $w''(z)-p(z,\lambda)w(z)=0$ pri $\lambda\to\infty$ v kompleksnoi plotnosti $z$”, UMN, 21:1(127) (1966), 3–50 | MR | Zbl

[16] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl

[17] B. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965