On the Deformation Method of Study of Global Asymptotic Stability
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 350-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-parameter family of systems $$ x'=F(x,\lambda),\qquad x\in\mathbb R^n, \quad 0\le\lambda\le1, $$ where $F\colon \mathbb R^n\times[0,1] \to \mathbb R^n$ is a continuous vector field. The solution $x(t)=\varphi(t,y,\lambda)$ is uniquely determined by the initial condition $x(0)=y=\varphi(0,y,\lambda)$ and can be continued to the whole axis $(-\infty,+\infty)$ for all $\lambda\in[0,1]$. We obtain conditions ensuring the preservation of the property of global asymptotic stability of the stationary solution of such a system as the parameter $\lambda$ varies.
Keywords: matrix first-order differential equation, global asymptotic stability of solutions, deformation method, Lyapunov stability.
@article{MZM_2014_95_3_a3,
     author = {G. E. Grishanina and N. G. Inozemtseva and M. B. Sadovnikova},
     title = {On the {Deformation} {Method} of {Study} of {Global} {Asymptotic} {Stability}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--358},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a3/}
}
TY  - JOUR
AU  - G. E. Grishanina
AU  - N. G. Inozemtseva
AU  - M. B. Sadovnikova
TI  - On the Deformation Method of Study of Global Asymptotic Stability
JO  - Matematičeskie zametki
PY  - 2014
SP  - 350
EP  - 358
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a3/
LA  - ru
ID  - MZM_2014_95_3_a3
ER  - 
%0 Journal Article
%A G. E. Grishanina
%A N. G. Inozemtseva
%A M. B. Sadovnikova
%T On the Deformation Method of Study of Global Asymptotic Stability
%J Matematičeskie zametki
%D 2014
%P 350-358
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a3/
%G ru
%F MZM_2014_95_3_a3
G. E. Grishanina; N. G. Inozemtseva; M. B. Sadovnikova. On the Deformation Method of Study of Global Asymptotic Stability. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 350-358. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a3/

[1] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl

[2] A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “Asimptoticheskaya ustoichivost i rodstvennye zadachi dinamiki padayuschego tyazhelogo tverdogo tela”, Nelineinaya dinam., 3:3 (2007), 255–296

[3] A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl

[4] B. I. Sadovnikov, N. G. Inozemtseva, V. I. Inozemtsev, “Korrelyatsionnaya funktsiya i termodinamicheskie velichiny v smeshannoi modeli”, EChAYa, 41 (2010), 1982–1989

[5] B. I. Sadovnikov, N. G. Inozemtseva, V. I. Inozemtsev, “The correlation function and the thermodynamic quantities of the mixed system”, The International Bogolyubov Conference, Book of Abstracts, Moskow–Dubna, 2009, 247

[6] E. A. Barabashin, N. N. Krasovskii, “O suschestvovanii funktsii Lyapunova v sluchae asimptoticheskoi ustoichivosti v tselom”, PMM, 18:3 (1954), 345–350 | MR | Zbl

[7] G. E. Grishanina, N. G. Inozemtseva, B. I. Sadovnikov, “Ob asimptoticheskoi ustoichivosti v tselom i sedle v beskonechnosti”, Matem. zametki, 93:4 (2013), 624–629 | DOI | Zbl

[8] G. E. Grishanina, “Asimptoticheskaya ustoichivost v tselom i sedlo na beskonechnosti”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina, Tezisy dokladov, Voronezh, 2010, 47–48

[9] N. A. Bobylev, “O deformatsii funktsionalov, imeyuschikh edinstvennuyu kriticheskuyu tochku”, Matem. zametki, 34:3 (1983), 387–398 | MR | Zbl

[10] N. A. Bobylev, G. V. Kondakov, “Deformatsionnyi metod issledovaniya negladkikh optimizatsionnykh zadach”, Avtomat. i telemekh., 1991, no. 5, 46–57 | MR | Zbl

[11] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M., 1949