On the Nonlinear Poisson Bracket Arising in Nonholonomic Mechanics
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 340-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonholonomic systems describing the rolling of a rigid body on a plane and their relationship with various Poisson structures are considered. The notion of generalized conformally Hamiltonian representation of dynamical systems is introduced. In contrast to linear Poisson structures defined by Lie algebras and used in rigid-body dynamics, the Poisson structures of nonholonomic systems turn out to be nonlinear.
Mots-clés : Poisson bracket, Poisson structure
Keywords: nonholonomic system, dynamical system, conformally Hamiltonian representation, Casimir function, Routh sphere, rolling of a Chaplygin ball.
@article{MZM_2014_95_3_a2,
     author = {A. V. Borisov and I. S. Mamaev and A. V. Tsiganov},
     title = {On the {Nonlinear} {Poisson} {Bracket} {Arising} in {Nonholonomic} {Mechanics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {340--349},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a2/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
AU  - A. V. Tsiganov
TI  - On the Nonlinear Poisson Bracket Arising in Nonholonomic Mechanics
JO  - Matematičeskie zametki
PY  - 2014
SP  - 340
EP  - 349
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a2/
LA  - ru
ID  - MZM_2014_95_3_a2
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%A A. V. Tsiganov
%T On the Nonlinear Poisson Bracket Arising in Nonholonomic Mechanics
%J Matematičeskie zametki
%D 2014
%P 340-349
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a2/
%G ru
%F MZM_2014_95_3_a2
A. V. Borisov; I. S. Mamaev; A. V. Tsiganov. On the Nonlinear Poisson Bracket Arising in Nonholonomic Mechanics. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 340-349. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a2/

[1] A. N. Kolmogorov, “O dinamicheskikh sistemakh s integralnym invariantom na tore”, Dokl. AN SSSR, 93:5 (1953), 763–766 | MR | Zbl

[2] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR

[3] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, IKI, M.–Izhevsk, 2005 | MR | Zbl

[4] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Gamiltonovost i integriruemost zadachi Suslova”, Nelineinaya dinam., 6:1 (2010), 127–142

[5] A. V. Borisov, I. S. Mamaev, “Rolling of a rigid body on plane and sphere. Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[6] A. V. Borisov, I. S. Mamaev, A. A. Kilin, “Rolling of a ball on a surface. New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[7] A. V. Borisov, I. S. Mamaev, “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[8] S. A. Chaplygin, “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”, Sobr. soch., T. 1, M.–L., 1948

[9] I. A. Bizyaev, A. V. Tsyganov, “O sfere Rausa”, Nelineinaya dinam., 8:3 (2012), 569–583