The Estermann Cubic Problem with Almost Equal Summands
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 445-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an asymptotic formula for the number of representations of a sufficiently large natural number $N$ as the sum of two primes $p_1$ and $p_2$ and the cube of a natural number $m$ satisfying the conditions $|p_i-N/3|\le H$, $|m^3-N/3|\le H$, $H\ge N^{5/6}\mathscr L^{10}$.
Keywords: Estermann cubic problem, Weyl sum, Hua estimate, rational trigonometric sum
Mots-clés : prime, Poisson summation formula.
@article{MZM_2014_95_3_a10,
     author = {Z. Kh. Rakhmonov},
     title = {The {Estermann} {Cubic} {Problem} with {Almost} {Equal} {Summands}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {445--456},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a10/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - The Estermann Cubic Problem with Almost Equal Summands
JO  - Matematičeskie zametki
PY  - 2014
SP  - 445
EP  - 456
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a10/
LA  - ru
ID  - MZM_2014_95_3_a10
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T The Estermann Cubic Problem with Almost Equal Summands
%J Matematičeskie zametki
%D 2014
%P 445-456
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a10/
%G ru
%F MZM_2014_95_3_a10
Z. Kh. Rakhmonov. The Estermann Cubic Problem with Almost Equal Summands. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 445-456. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a10/

[1] T. Estermann, “Proof that every large integer is the sum two primes and a square”, Proc. London Math. Soc. (2), 42:1 (1937), 501–516 | DOI | MR | Zbl

[2] Z. Kh. Rakhmonov, “Ternarnaya zadacha Estermana s pochti ravnymi slagaemymi”, Matem. zametki, 74:4 (2003), 564–572 | DOI | MR | Zbl

[3] R. C. Vaughan, “Some remarks on Weyl sums”, Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai, 34, North-Holland, Amsterdam, 1984, 1585–1602 | MR | Zbl

[4] H. Iwaniec, E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[5] L. K. Hua, “On an exponential sum”, J. Chinese Math. Soc., 2 (1940), 301–312 | MR | Zbl

[6] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR | Zbl

[7] Z. Kh. Rakhmonov, “Korotkie lineinye trigonometricheskie summy s prostymi chislami”, Dokl. AN Respubliki Tadzhikistan, 43:3 (2000), 27–40

[8] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, 2-oe izd., Nauka, M., 1983 | MR | Zbl