Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and~$\alpha$ is Odd
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 323-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. The prime graph of $G$ is denoted by $\Gamma(G)$. In this paper, as the main result, we show that if $G$ is a finite group such that $\Gamma(G)=\Gamma(^2D_n(3^\alpha))$, where $n=4m+1$ and $\alpha$ is odd, then $G$ has a unique non-Abelian composition factor isomorphic to $^2D_n(3^\alpha)$. We also show that if $G$ is a finite group satisfying $|G|=|^2D_n(3^\alpha)|$, and $\Gamma(G)=\Gamma(^2D_n(3^\alpha))$, then $G\cong{}^2D_n(3^\alpha)$. As a consequence of our result, we give a new proof for a conjecture of Shi and Bi for $^2D_n(3^\alpha)$. Application of this result to the problem of recognition of finite simple groups by the set of element orders are also considered. Specifically, it is proved that $^2D_n(3^\alpha)$ is quasirecognizable by the spectrum.
Keywords: prime graph, recognition, quasirecognition.
Mots-clés : simple group
@article{MZM_2014_95_3_a0,
     author = {A. Babai and B. Khosravi},
     title = {Quasirecognition by {Prime} {Graph} of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and~$\alpha$ is {Odd}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--334},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a0/}
}
TY  - JOUR
AU  - A. Babai
AU  - B. Khosravi
TI  - Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and~$\alpha$ is Odd
JO  - Matematičeskie zametki
PY  - 2014
SP  - 323
EP  - 334
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a0/
LA  - ru
ID  - MZM_2014_95_3_a0
ER  - 
%0 Journal Article
%A A. Babai
%A B. Khosravi
%T Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and~$\alpha$ is Odd
%J Matematičeskie zametki
%D 2014
%P 323-334
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a0/
%G ru
%F MZM_2014_95_3_a0
A. Babai; B. Khosravi. Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and~$\alpha$ is Odd. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 323-334. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a0/

[1] A. S. Kondratev, “Kvaziraspoznavaemost po mnozhestvu poryadkov elementov grupp $E_6(q)$ i $^2E_6(q)$”, Sib. matem. zhurn., 48:6 (2007), 1250–1271 | MR | Zbl

[2] A. Khosravi, B. Khosravi, “Kvaziraspoznavanie prostoi gruppy ${}^2G_2(q)$ po grafu prostykh chisel”, Sib. matem. zhurn., 48:3 (2007), 707–716 | MR | Zbl

[3] M. Hagie, “The prime graph of a sporadic simple group”, Comm. Algebra, 31:9 (2003), 4405–4424 | DOI | MR | Zbl

[4] A. M. Popov, “O stroenii nekotorykh grupp s konechnym $H$-frobeniusovym elementom”, Algebra i logika, 43:2 (2004), 220–228 | MR | Zbl

[5] B. Khosravi, B. Khosravi, B. Khosravi, “Groups with the same prime graph as a CIT simple group”, Houston J. Math., 33:4 (2007), 967–977 | MR | Zbl

[6] B. Khosravi, B. Khosravi, B. Khosravi, “On the prime graph of $PSL(2, p)$ where $p>3$ is a prime number”, Acta. Math. Hungar., 116:4 (2007), 295–307 | DOI | MR | Zbl

[7] A. Khosravi, B. Khosravi, “2-raspoznavaemost $PSL(2,p^2)$ po grafu prostykh chisel”, Sib. matem. zhurn., 49:4 (2008), 934–944 | MR | Zbl

[8] B. Khosravi, “$n$-Recognition by prime graph of the simple group $PSL(2,q)$”, J. Algebra Appl., 7:6 (2008), 735–748 | DOI | MR | Zbl

[9] Z. Momen, B. Khosravi, “On $r$-recognition by prime graph of $B_p(3)$ where $p$ is an odd prime”, Monatsh. Math., 166:2 (2012), 239–253 | DOI | MR | Zbl

[10] A. Babai, B. Khosravi, “On the composition factors of a group with the same prime graph as $B_n(5)$”, Czechoslovak Math. J., 62:2 (2012), 469–486 | DOI | MR | Zbl

[11] B. Khosravi, A. Babai, “Quasirecognition by prime graph of $F_{4}(q)$ where $q=2^n>2$”, Monatsh. Math., 162:3 (2011), 289–296 | DOI | MR | Zbl

[12] Z. Akhlaghi, M. Khatami, B. Khosravi, “Quasirecognition by prime graph of the simple group ${}^2F_4(q)$”, Acta Math. Hungar., 122:4 (2009), 387–397 | DOI | MR | Zbl

[13] M. Khatami, B. Khosravi, Z. Akhlaghi, “NCF-distinguishablity by prime graph of $PGL(2,p)$, where $p$ is a prime”, Rocky Mountian J. Math., 41:5 (2011), 1523–1545 | DOI | MR | Zbl

[14] Z. Akhlaghi, B. Khosravi, M. Khatami, “Characterization by prime graph of $PGL(2,p^k)$ where $p$ and $k>1$ are odd”, Internat. J. Algebra Comput., 20:7 (2010), 847–873 | DOI | MR | Zbl

[15] B. Khosravi, B. Khosravi, B. Khosravi, “A characterization of the finite simple group $L_{16}(2)$ by its prime graph”, Manuscripta Math., 126 (2008), 49–58 | DOI | MR | Zbl

[16] B. Khosravi, “Kvaziraspoznavaemost $L_{10}(2)$ po grafu prostykh chisel”, Sib. matem. zhurn., 50:2 (2009), 446–452 | MR | Zbl

[17] B. Khosravi, “Some characterizations of $L_{9}(2)$ related to its prime graph”, Publ. Math. Debrecen, 75:3-4 (2009), 375–385 | MR | Zbl

[18] B. Khosravi, H. Moradi, “Quasirecognition by prime graph of finite simple groups $L_n(2)$ and $U_n(2)$”, Acta. Math. Hungar., 132:1-2 (2011), 140–153 | DOI | MR | Zbl

[19] B. Khosravi, H. Moradi, “Quasirecognition by prime graph of some orthogonal groups over the binary field”, J. Algebra Appl., 11:3 (2012), 1250056 | DOI | MR | Zbl

[20] A. Babai, B. Khosravi, N. Hasani, “Quasirecognition by prime graph of ${}^2D_p(3)$ where $p=2^n+1\geqslant5$ is a prime”, Bull. Malays. Math. Sci. Soc. (2), 32:3 (2009), 343–350 | MR | Zbl

[21] A. Babai, B. Khosravi, “Raspoznavanie grupp $^2D_{2m+1}(3)$ po grafu prostykh chisel”, Sib. matem. zhurn., 52:5 (2011), 993–1003 | MR | Zbl

[22] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford Univ. Press, Oxford, 1985 | MR | Zbl

[23] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[24] A. V. Vasilev, I. B. Gorshkov, “O raspoznavanii konechnykh prostykh grupp so svyaznym grafom prostykh chisel”, Sib. matem. zhurn., 50:2 (2009), 292–299 | MR

[25] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3:1 (1892), 265–284 | MR | Zbl

[26] W. Sierpiński, Elementary Theory of Numbers, Monogr. Mat., 42, PWN, Warsaw, 1964 | MR | Zbl

[27] V. D. Mazurov, “Kharakterizatsii konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[28] H. He, W. Shi, “Recognition of some finite simple groups of type $D_n(q)$ by spectrum”, Internat. J. Algebra Comput., 19:5 (2009), 681–698 | MR | Zbl

[29] A. V. Vasilev, E. P. Vdovin, “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[30] A. V. Vasilev, M. A. Grechkoseeva, “O raspoznavaemosti konechnykh prostykh ortogonalnykh grupp razmernosti $2^m$, $2^m+1$ i $2^m+2$ nad polem kharakteristiki 2”, Sib. matem. zhurn., 45:3 (2004), 510–526 | MR | Zbl

[31] E. Stensholt, “Certain embeddings among finite groups of lie type”, J. Algebra, 53:1 (1978), 136–187 | DOI | MR | Zbl