Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and~$\alpha$ is Odd
Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 323-334
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group. The prime graph of $G$ is denoted by $\Gamma(G)$. In this paper, as the main result, we show that if $G$ is a finite group such that $\Gamma(G)=\Gamma(^2D_n(3^\alpha))$, where $n=4m+1$ and $\alpha$ is odd, then $G$ has a unique non-Abelian composition factor isomorphic to $^2D_n(3^\alpha)$. We also show that if $G$ is a finite group satisfying $|G|=|^2D_n(3^\alpha)|$, and $\Gamma(G)=\Gamma(^2D_n(3^\alpha))$, then $G\cong{}^2D_n(3^\alpha)$. As a consequence of our result, we give a new proof for a conjecture of Shi and Bi for $^2D_n(3^\alpha)$. Application of this result to the problem of recognition of finite simple groups by the set of element orders are also considered. Specifically, it is proved that $^2D_n(3^\alpha)$ is quasirecognizable by the spectrum.
Keywords:
prime graph, recognition, quasirecognition.
Mots-clés : simple group
Mots-clés : simple group
@article{MZM_2014_95_3_a0,
author = {A. Babai and B. Khosravi},
title = {Quasirecognition by {Prime} {Graph} of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and~$\alpha$ is {Odd}},
journal = {Matemati\v{c}eskie zametki},
pages = {323--334},
publisher = {mathdoc},
volume = {95},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a0/}
}
TY - JOUR
AU - A. Babai
AU - B. Khosravi
TI - Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and~$\alpha$ is Odd
JO - Matematičeskie zametki
PY - 2014
SP - 323
EP - 334
VL - 95
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a0/
LA - ru
ID - MZM_2014_95_3_a0
ER -
A. Babai; B. Khosravi. Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and~$\alpha$ is Odd. Matematičeskie zametki, Tome 95 (2014) no. 3, pp. 323-334. http://geodesic.mathdoc.fr/item/MZM_2014_95_3_a0/