Estimates of the Dirichlet Kernel and Divergent Fourier Series in the Walsh--Kaczmarz System
Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 257-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new lower bound for the growth of the Dirichlet kernel for the Walsh–Kaczmarz system is obtained and an example of an almost everywhere divergent Fourier series with respect to this system from a class narrower than that examined earlier is constructed.
Keywords: Dirichlet kernel, Fourier series, Walsh–Kaczmarz system, Kaczmarz indexing, Walsh function.
Mots-clés : Lebesgue measure
@article{MZM_2014_95_2_a8,
     author = {I. V. Polyakov},
     title = {Estimates of the {Dirichlet} {Kernel} and {Divergent} {Fourier} {Series} in the {Walsh--Kaczmarz} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {257--270},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a8/}
}
TY  - JOUR
AU  - I. V. Polyakov
TI  - Estimates of the Dirichlet Kernel and Divergent Fourier Series in the Walsh--Kaczmarz System
JO  - Matematičeskie zametki
PY  - 2014
SP  - 257
EP  - 270
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a8/
LA  - ru
ID  - MZM_2014_95_2_a8
ER  - 
%0 Journal Article
%A I. V. Polyakov
%T Estimates of the Dirichlet Kernel and Divergent Fourier Series in the Walsh--Kaczmarz System
%J Matematičeskie zametki
%D 2014
%P 257-270
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a8/
%G ru
%F MZM_2014_95_2_a8
I. V. Polyakov. Estimates of the Dirichlet Kernel and Divergent Fourier Series in the Walsh--Kaczmarz System. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 257-270. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a8/

[1] F. Shipp, “O nekotorykh perestanovkakh ryadov po sisteme Uolsha”, Matem. zametki, 18:2 (1975), 193–201 | MR | Zbl

[2] Wo Sang Young, “On a.e. convergence of Walsh–Kaczmarz–Fourier series”, Proc. Amer. Math. Soc., 44 (1974), 353–358 | DOI | MR | Zbl

[3] N. Yu. Antonov, “Convergence of Fourier series”, East J. Aprox., 2:2 (1996), 187–196 | MR | Zbl

[4] N. Yu. Antonov, “Usloviya konechnosti mazhorant posledovatelnostei operatorov i skhodimost ryadov Fure”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Sbornik statei, Tr. IMM UrO RAN, 7, no. 1, 2001, 3–20 | MR | Zbl

[5] P. Sjölin, F. Soria, “Remarks on a theorem by N. Y. Antonov”, Studia Math., 158 (2003), 79–97 | DOI | MR | Zbl

[6] A. A. Shneider, “O ryadakh po funktsiyam Valsha s monotonnymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 12:2 (1948), 179–192 | MR | Zbl

[7] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[8] L. A. Balashov, “O ryadakh po sisteme Uolsha s monotonnymi koeffitsientami”, Sib. matem. zhurn., 12:1 (1971), 25–39 | MR | Zbl

[9] S. V. Bochkarev, “Vsyudu raskhodyaschiesya ryady Fure po sisteme Uolsha i multiplikativnym sistemam”, UMN, 59:1(355) (2004), 103–124 | DOI | MR | Zbl

[10] S. V. Konyagin, “O raskhodimosti vsyudu trigonometricheskikh ryadov Fure”, Matem. sb., 191:1 (2000), 103–126 | DOI | MR | Zbl

[11] F. Schipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990 | MR | Zbl