A Central Limit Theorem for Integrals with Respect to Random Measures
Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 209-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

Integrals with respect to stationary random measures are considered. A central limit theorem for such integrals is proved. The results are applied to obtain a functional central limit theorem for transformed solutions of the Burgers equation with random initial data.
Keywords: central limit theorem, integral with respect to a stationary random measure, Burgers equation with random initial data.
@article{MZM_2014_95_2_a3,
     author = {V. P. Demichev},
     title = {A {Central} {Limit} {Theorem} for {Integrals} with {Respect} to {Random} {Measures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {209--221},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a3/}
}
TY  - JOUR
AU  - V. P. Demichev
TI  - A Central Limit Theorem for Integrals with Respect to Random Measures
JO  - Matematičeskie zametki
PY  - 2014
SP  - 209
EP  - 221
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a3/
LA  - ru
ID  - MZM_2014_95_2_a3
ER  - 
%0 Journal Article
%A V. P. Demichev
%T A Central Limit Theorem for Integrals with Respect to Random Measures
%J Matematičeskie zametki
%D 2014
%P 209-221
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a3/
%G ru
%F MZM_2014_95_2_a3
V. P. Demichev. A Central Limit Theorem for Integrals with Respect to Random Measures. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 209-221. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a3/

[1] S. N. Gurbatov, A. N. Malakhov, A. I. Saichev, Nelineinye sluchainye volny v sredakh bez dispersii, Sovremennye problemy fiziki, 81, Nauka, M., 1990 | MR

[2] W. A. Woyczyński, “Burgers-KPZ Turbulence. Göttingen Lectures”, Lecture Notes in Math., 1700, Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl

[3] S. F. Shandarin, Ya. B. Zeldovich, “The large scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium”, Rev. Mod. Phys., 61:2 (1989), 185–220 | DOI | MR

[4] A. V. Bulinskii, S. A. Molchanov, “Asimptoticheskaya gaussovost resheniya uravneniya Byurgersa so sluchainymi nachalnymi dannymi”, TVP, 36:2 (1991), 217–235 | MR | Zbl

[5] A. V. Bulinskii, “Some problems of asymptotical analysis of nonlinear diffusion”, Probability Theory and Mathematical Statistics, eds. A. N. Shiryaev et al., World Sci. Publ., Singapore, 1992, 32–46 | MR | Zbl

[6] A. V. Bulinskii, “CLT for the solution of the multidimensional Burgers equation with random data”, Ann. Acad. Sci. Fenn. Ser. A I Math., 17:1 (1992), 11–22 | MR | Zbl

[7] T. Funaki, D. Surgailis, W. A. Woyczynski, “Gibbs-Cox random fields and Burgers turbulence”, Ann. Appl. Probab., 5:2 (1995), 461–492 | DOI | MR | Zbl

[8] N. Leonenko, E. Orsingher, “Limit theorems for solutions of the Burgers equation with Gaussian and non-Gaussian initial conditions”, TVP, 40:2 (1995), 387–403 | MR | Zbl

[9] S. A. Molchanov, D. Surgailis, W. A. Woyczynski, “Hyperbolic asymptotics in Burgers' turbulence and extremal processes”, Comm. Math. Phys., 168:1 (1995), 209–226 | DOI | MR | Zbl

[10] Ya. G. Sinai, “Two results concerning asymptotic behaviour of solutions of the Burgers equation with force”, J. Stat. Phys., 64:1-2 (1991), 1–12 | DOI | MR | Zbl

[11] O. E. Barndorff-Nielsen, N. N. Leonenko, “Burgers' turbulence problem with linear or quadratic external potential”, J. Appl. Probab., 42:2 (2005), 550–565 | DOI | MR | Zbl

[12] N. N. Leonenko, M. D. Ruiz-Medina, “Scaling laws for the multidimensional Burgers equation with quadratic external potential”, J. Stat. Phys., 124:1 (2006), 191–205 | DOI | MR | Zbl

[13] Yu. Yu. Bakhtin, “Funktsionalnaya tsentralnaya predelnaya teorema dlya resheniya mnogomernogo uravneniya Byurgersa s nachalnymi dannymi, zadannymi assotsiirovannoi sluchainoi meroi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2000, no. 6, 8–15 | MR | Zbl

[14] Yu. Yu. Bakhtin, “Funktsionalnaya tsentralnaya predelnaya teorema dlya preobrazovannykh reshenii mnogomernogo uravneniya Byurgersa so sluchainymi nachalnymi dannymi”, TVP, 46:3 (2001), 427–448 | DOI | MR | Zbl

[15] A. Bulinski, C. Suquet, “Normal approximation for quasi-associated random fields”, Statist. Probab. Lett., 54:2 (2001), 215–226 | DOI | MR | Zbl

[16] S. N. Evans, “Association and random measures”, Probab. Theory Related Fields, 86:1 (1990), 1–19 | DOI | MR | Zbl

[17] A. V. Bulinskii, A. P. Shashkin, Predelnye teoremy dlya assotsiirovannykh sluchainykh polei i rodstvennykh sistem, Fizmatlit, M., 2008

[18] A. V. Bulinskii, E. Shabanovich, “Asimptoticheskoe povedenie nekotorykh funktsionalov ot polozhitelno i otritsatelno zavisimykh sluchainykh polei”, Fundament. i prikl. matem., 4:2 (1998), 479–492 | MR | Zbl

[19] A. P. Shashkin, “Kvaziassotsiirovannost gaussovskoi sistemy sluchainykh vektorov”, UMN, 57:6(348) (2002), 199–200 | DOI | MR | Zbl

[20] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | MR | Zbl

[21] A. V. Bulinski, E. Spodarev, F. Timmermann, “Central limit theorems for the excursion set volumes of weakly dependent random fields”, Bernoulli, 18:1 (2012), 100–118 | DOI | MR | Zbl

[22] A. Bulinski, “Central limit theorem for random fields and applications”, Advances in Data Analysis, Stat. Ind. Technol., Birkhäuser Boston, Boston, MA, 2010, 141–150 | MR

[23] H. Yu, “A Glivenko–Cantelli lemma and weak convergence for empirical processes of associated sequences”, Probab. Theory Related Fields, 95:3 (1993), 357–370 | DOI | MR | Zbl

[24] J. M. Burgers, The Nonlinear Diffusion Equation. Asymptotic Solutions and Statistical Problems, D. Reidel Publ., Boston, 1974 | Zbl

[25] P. J. Bickel, M. J. Wichura, “Convergence criteria for multiparameter Stochastic processes and some applications”, Ann. Math. Statist., 42:5 (1971), 1656–1670 | DOI | MR | Zbl