Double Exponential Lower Bound for the Number of Representations of Unity by Egyptian Fractions
Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 312-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Egyptian fraction, Egyptian fraction of a rational number, Egyptian fraction representation of unity.
@article{MZM_2014_95_2_a12,
     author = {S. V. Konyagin},
     title = {Double {Exponential} {Lower} {Bound} for the {Number} of {Representations} of {Unity} by {Egyptian} {Fractions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {312--316},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a12/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - Double Exponential Lower Bound for the Number of Representations of Unity by Egyptian Fractions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 312
EP  - 316
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a12/
LA  - ru
ID  - MZM_2014_95_2_a12
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T Double Exponential Lower Bound for the Number of Representations of Unity by Egyptian Fractions
%J Matematičeskie zametki
%D 2014
%P 312-316
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a12/
%G ru
%F MZM_2014_95_2_a12
S. V. Konyagin. Double Exponential Lower Bound for the Number of Representations of Unity by Egyptian Fractions. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 312-316. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a12/

[1] G. Robins, Ch. Shute, The Rhind Mathematical Papyrus. An Ancient Egyptian Text, British Museum Publ., London, 1987 | MR | Zbl

[2] L. E. Sigler, Fibonacci's Liber Abaci, A Translation into Modern English of Leonardo Pisano's Book of Calculation, Springer-Verlag, New York, 2003

[3] R. L. Graham, Erdős Centennial, On the occasion of Paul Erdős 100th anniversary of his birth, Bolyai Soc. Math. Stud., 25, Springer, Berlin; János Bolyai Math. Soc., Budapest, 2013, 289–309

[4] C. Sándor, Period. Math. Hungar., 47:1-2 (2003), 215–219 | DOI | MR | Zbl

[5] A. S. Bang, Zeuthen Tidskr. (5), 4 (1886), 70–80 | Zbl

[6] A. Wiman, Arkiv f. Mat., Astr. och Fys., 3:18 (1907), 9 pp.

[7] F. Luca, I. E. Shparlinski, Monatsh. Math., 154:1 (2008), 59–69 | DOI | MR | Zbl

[8] L. G. Sathe, J. Indian Math. Soc. (N.S.), 17 (1953), 63–82 ; 17 (1953), 83–141 ; 18 (1954), 27–42 ; 18 (1954), 43–81 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[9] A. Selberg, J. Indian Math. Soc. (N.S.), 18 (1954), 83–87 | MR | Zbl

[10] A. Hildebrand, G. Tenenbaum, Duke Math. J., 56:3 (1988), 471–501 | DOI | MR | Zbl