Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_2_a12, author = {S. V. Konyagin}, title = {Double {Exponential} {Lower} {Bound} for the {Number} of {Representations} of {Unity} by {Egyptian} {Fractions}}, journal = {Matemati\v{c}eskie zametki}, pages = {312--316}, publisher = {mathdoc}, volume = {95}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a12/} }
TY - JOUR AU - S. V. Konyagin TI - Double Exponential Lower Bound for the Number of Representations of Unity by Egyptian Fractions JO - Matematičeskie zametki PY - 2014 SP - 312 EP - 316 VL - 95 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a12/ LA - ru ID - MZM_2014_95_2_a12 ER -
S. V. Konyagin. Double Exponential Lower Bound for the Number of Representations of Unity by Egyptian Fractions. Matematičeskie zametki, Tome 95 (2014) no. 2, pp. 312-316. http://geodesic.mathdoc.fr/item/MZM_2014_95_2_a12/
[1] G. Robins, Ch. Shute, The Rhind Mathematical Papyrus. An Ancient Egyptian Text, British Museum Publ., London, 1987 | MR | Zbl
[2] L. E. Sigler, Fibonacci's Liber Abaci, A Translation into Modern English of Leonardo Pisano's Book of Calculation, Springer-Verlag, New York, 2003
[3] R. L. Graham, Erdős Centennial, On the occasion of Paul Erdős 100th anniversary of his birth, Bolyai Soc. Math. Stud., 25, Springer, Berlin; János Bolyai Math. Soc., Budapest, 2013, 289–309
[4] C. Sándor, Period. Math. Hungar., 47:1-2 (2003), 215–219 | DOI | MR | Zbl
[5] A. S. Bang, Zeuthen Tidskr. (5), 4 (1886), 70–80 | Zbl
[6] A. Wiman, Arkiv f. Mat., Astr. och Fys., 3:18 (1907), 9 pp.
[7] F. Luca, I. E. Shparlinski, Monatsh. Math., 154:1 (2008), 59–69 | DOI | MR | Zbl
[8] L. G. Sathe, J. Indian Math. Soc. (N.S.), 17 (1953), 63–82 ; 17 (1953), 83–141 ; 18 (1954), 27–42 ; 18 (1954), 43–81 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl
[9] A. Selberg, J. Indian Math. Soc. (N.S.), 18 (1954), 83–87 | MR | Zbl
[10] A. Hildebrand, G. Tenenbaum, Duke Math. J., 56:3 (1988), 471–501 | DOI | MR | Zbl