Morita Context, Partial Hopf Galois Extensions and Partial Entwining Structure
Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We first introduce the notion of a right generalized partial smash product and explore some properties of such partial smash product. Based on these notions and properties, then we construct a Morita context for partial coactions of a co-Frobenius Hopf algebra. Finally, we prove that any Hopf partial Galois extension induces a unique partial entwining map compatible with the right partial coaction.
Keywords: partial smash product, partial entwining structure
Mots-clés : Morita context, partial Hopf Galois extension.
@article{MZM_2014_95_1_a4,
     author = {C. Z. Du and J. F. Lin},
     title = {Morita {Context,} {Partial} {Hopf} {Galois} {Extensions} and {Partial} {Entwining} {Structure}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {50--62},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a4/}
}
TY  - JOUR
AU  - C. Z. Du
AU  - J. F. Lin
TI  - Morita Context, Partial Hopf Galois Extensions and Partial Entwining Structure
JO  - Matematičeskie zametki
PY  - 2014
SP  - 50
EP  - 62
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a4/
LA  - ru
ID  - MZM_2014_95_1_a4
ER  - 
%0 Journal Article
%A C. Z. Du
%A J. F. Lin
%T Morita Context, Partial Hopf Galois Extensions and Partial Entwining Structure
%J Matematičeskie zametki
%D 2014
%P 50-62
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a4/
%G ru
%F MZM_2014_95_1_a4
C. Z. Du; J. F. Lin. Morita Context, Partial Hopf Galois Extensions and Partial Entwining Structure. Matematičeskie zametki, Tome 95 (2014) no. 1, pp. 50-62. http://geodesic.mathdoc.fr/item/MZM_2014_95_1_a4/

[1] R. Exel, “Circle actions on $C^*$-algebras, partial automorphisms and generalized Pimsner–Voiculescu exact sequences”, J. Funct. Anal., 122:2 (1994), 361–401 | DOI | MR | Zbl

[2] M. Dokuchaev, R. Exel, “Associativity of crossed products by partial actions, enveloping actions and partial representations”, Trans. Amer. Math. Soc., 357:5 (2005), 1931–1952 | DOI | MR | Zbl

[3] M. Dokuchaev, M. Ferrero, A. Paques, “Partial actions and Galois theory”, J. Pure Appl. Algebra, 208:1 (2007), 77–87 | DOI | MR | Zbl

[4] S. Caenepeel, K. Janssen, “Partial (co)actions of Hopf algebras and partial Hopf–Galois theory”, Comm. Algebra, 36:8 (2008), 2923–2946 | DOI | MR | Zbl

[5] C. Lomp, “Duality for partial group actions”, Int. Electron. J. Algebra, 4 (2008), 53–62 | MR | Zbl

[6] M. M. S. Alves, E. Batista, Partial Hopf Actions, Partial Invariants and a Morita Context, arXiv: math.RA/0901.0959v2

[7] M. Beattie, S. Dăscălescu, Ş. Raianu, “Galois extensions for co-Frobenius Hopf algebras”, J. Algebra, 198:1 (1997), 164–183 | DOI | MR | Zbl

[8] T. Brzeziński, “On modules associated to coalgebra-Galois extensions”, J. Algebra, 215:1 (1999), 290–317 | DOI | MR | Zbl

[9] M. E. Sweedler, Hopf Algebras, Math. Lecture Note Ser., W. A. Benjamin, New York, 1969 | MR | Zbl