Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_6_a4, author = {V. N. Dubinin}, title = {Symmetrization of {Condensers} and {Inequalities} for {Functions} {Multivalent} in a {Disk}}, journal = {Matemati\v{c}eskie zametki}, pages = {846--856}, publisher = {mathdoc}, volume = {94}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a4/} }
V. N. Dubinin. Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 846-856. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a4/
[1] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, IL., M., 1962 | MR
[2] W. K. Hayman, Multivalent Functions, Cambridge Tracts in Math., 100, Cambridge Univ. Press, Cambridge, 1994 | MR
[3] V. H. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009
[4] V. N. Dubinin, “Novaya versiya krugovoi simmetrizatsii s prilozheniyami k $p$-listnym funktsiyam”, Matem. sb., 203:7 (2012), 79–94 | DOI | MR | Zbl
[5] S.-A. Kim, D. Minda, “Two-point distortion theorems for univalent functions”, Pacific J. Math., 163:1 (1994), 137–157 | DOI | MR
[6] W. Ma, D. Minda, “Two-point distortion for univalent functions”, J. Comput. Appl. Math., 105:1-2 (1999), 385–392 | DOI | MR
[7] J. A. Jenkins, “On two-point distortion theorems for bounded unvialent regular functions”, Kodai Math. J., 24:3 (2001), 329–338 | DOI | MR
[8] D. Kraus, O. Roth, “Weighted distortion in conformal mapping in euclidean, hyperbolic and elliptic geometry”, Ann. Acad. Sci. Fenn. Math., 31:1 (2006), 111–130 | MR
[9] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968 | MR
[10] W. Kraus, “Über den Zusammenhang einiger Charakteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung”, Mitt. Math. Semin. Univ. Giessen, 21 (1932), 1–28 | Zbl
[11] M. Fekete, G. Szegő, “Eine Bemerkung über ungerade schlichte Funktionen”, J. London Math. Soc., 8 (1933), 85–89 | DOI | MR
[12] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR