Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 846-856

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the circular symmetrization of sets and condensers on Riemann surfaces, we establish new inequalities for multivalent functions with conditions on the critical values of the functions or on the coverings of concentric circles. Two-point distortion theorems, an inequality for the initial coefficients, and a lower bound for the modulus of functions (of diverse classes) $p$-valent in a disk are proved.
Keywords: circular symmetrization, symmetrization of condensers, multivalent function, two-point distortion theorem, Riemann surface, holomorphic (meromorphic) function.
@article{MZM_2013_94_6_a4,
     author = {V. N. Dubinin},
     title = {Symmetrization of {Condensers} and {Inequalities} for {Functions} {Multivalent} in a {Disk}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {846--856},
     publisher = {mathdoc},
     volume = {94},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk
JO  - Matematičeskie zametki
PY  - 2013
SP  - 846
EP  - 856
VL  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a4/
LA  - ru
ID  - MZM_2013_94_6_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk
%J Matematičeskie zametki
%D 2013
%P 846-856
%V 94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a4/
%G ru
%F MZM_2013_94_6_a4
V. N. Dubinin. Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 846-856. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a4/