Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk
Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 846-856.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the circular symmetrization of sets and condensers on Riemann surfaces, we establish new inequalities for multivalent functions with conditions on the critical values of the functions or on the coverings of concentric circles. Two-point distortion theorems, an inequality for the initial coefficients, and a lower bound for the modulus of functions (of diverse classes) $p$-valent in a disk are proved.
Keywords: circular symmetrization, symmetrization of condensers, multivalent function, two-point distortion theorem, Riemann surface, holomorphic (meromorphic) function.
@article{MZM_2013_94_6_a4,
     author = {V. N. Dubinin},
     title = {Symmetrization of {Condensers} and {Inequalities} for {Functions} {Multivalent} in a {Disk}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {846--856},
     publisher = {mathdoc},
     volume = {94},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk
JO  - Matematičeskie zametki
PY  - 2013
SP  - 846
EP  - 856
VL  - 94
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a4/
LA  - ru
ID  - MZM_2013_94_6_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk
%J Matematičeskie zametki
%D 2013
%P 846-856
%V 94
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a4/
%G ru
%F MZM_2013_94_6_a4
V. N. Dubinin. Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk. Matematičeskie zametki, Tome 94 (2013) no. 6, pp. 846-856. http://geodesic.mathdoc.fr/item/MZM_2013_94_6_a4/

[1] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, IL., M., 1962 | MR

[2] W. K. Hayman, Multivalent Functions, Cambridge Tracts in Math., 100, Cambridge Univ. Press, Cambridge, 1994 | MR

[3] V. H. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[4] V. N. Dubinin, “Novaya versiya krugovoi simmetrizatsii s prilozheniyami k $p$-listnym funktsiyam”, Matem. sb., 203:7 (2012), 79–94 | DOI | MR | Zbl

[5] S.-A. Kim, D. Minda, “Two-point distortion theorems for univalent functions”, Pacific J. Math., 163:1 (1994), 137–157 | DOI | MR

[6] W. Ma, D. Minda, “Two-point distortion for univalent functions”, J. Comput. Appl. Math., 105:1-2 (1999), 385–392 | DOI | MR

[7] J. A. Jenkins, “On two-point distortion theorems for bounded unvialent regular functions”, Kodai Math. J., 24:3 (2001), 329–338 | DOI | MR

[8] D. Kraus, O. Roth, “Weighted distortion in conformal mapping in euclidean, hyperbolic and elliptic geometry”, Ann. Acad. Sci. Fenn. Math., 31:1 (2006), 111–130 | MR

[9] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968 | MR

[10] W. Kraus, “Über den Zusammenhang einiger Charakteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung”, Mitt. Math. Semin. Univ. Giessen, 21 (1932), 1–28 | Zbl

[11] M. Fekete, G. Szegő, “Eine Bemerkung über ungerade schlichte Funktionen”, J. London Math. Soc., 8 (1933), 85–89 | DOI | MR

[12] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR