On the Classical and Generalized Solutions of Boundary-Value Problems for Difference-Differential Equations with Variable Coefficients
Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 702-719.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first boundary-value problem for second-order difference-differential equations with variable coefficients on a finite interval $(0,d)$ is considered. The following question is studied: Under what conditions will the boundary-value problem for a difference-differential equation have a classical solution for an arbitrary continuous right-hand side? It is proved that a necessary and sufficient condition for the existence of a classical solution is that certain coefficients of the difference operators on the orbits generated by the shifts be equal to zero.
Keywords: difference-differential equation, first boundary-value problem, difference operator, Sobolev space.
@article{MZM_2013_94_5_a6,
     author = {D. A. Neverova and A. L. Skubachevskii},
     title = {On the {Classical} and {Generalized} {Solutions} of {Boundary-Value} {Problems} for {Difference-Differential} {Equations} with {Variable} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {702--719},
     publisher = {mathdoc},
     volume = {94},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a6/}
}
TY  - JOUR
AU  - D. A. Neverova
AU  - A. L. Skubachevskii
TI  - On the Classical and Generalized Solutions of Boundary-Value Problems for Difference-Differential Equations with Variable Coefficients
JO  - Matematičeskie zametki
PY  - 2013
SP  - 702
EP  - 719
VL  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a6/
LA  - ru
ID  - MZM_2013_94_5_a6
ER  - 
%0 Journal Article
%A D. A. Neverova
%A A. L. Skubachevskii
%T On the Classical and Generalized Solutions of Boundary-Value Problems for Difference-Differential Equations with Variable Coefficients
%J Matematičeskie zametki
%D 2013
%P 702-719
%V 94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a6/
%G ru
%F MZM_2013_94_5_a6
D. A. Neverova; A. L. Skubachevskii. On the Classical and Generalized Solutions of Boundary-Value Problems for Difference-Differential Equations with Variable Coefficients. Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 702-719. http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a6/

[1] N. N. Krasovskii, Teoriya upravleniya dvizheniya. Lineinye sistemy, Nauka, M., 1968 | MR | Zbl

[2] G. G. Onanov, A. L. Skubachevskii, “Differentsialnye uravneniya s otklonyayuschimisya argumentami v statsionarnykh zadachakh mekhaniki deformiruemogo tela”, Prikl. mekh., 15:5 (1979), 39–47 | MR

[3] A. V. Bitsadze, A. A. Samarskii, “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | MR | Zbl

[4] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Oper. Theory Adv. Appl., 91, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[5] G. A. Kamenskii, A. D. Myshkis, “Postanovka kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimisya argumentami v starshikh chlenakh”, Differents. uravneniya, 10 (1974), 409–418 | MR | Zbl

[6] A. G. Kamenskii, “Kraevye zadachi dlya uravnenii s formalno simmetrichnymi differentsialno-raznostnymi operatorami,”, Differents. uravneniya, 12:5 (1976), 815–824 | MR

[7] D. A. Neverova, A. L. Skubachevskii, “Obobschennye i klassicheskie resheniya kraevykh zadach dlya differentsialno-raznostnykh uravnenii”, Dokl. RAN, 447:2 (2012), 143–145 | MR | Zbl

[8] G. A. Kamenskii, Extrema of Nonlocal Functionals and Boundary Value Problems for Functional Differential Equations, Nova Sci. Publ., New York, 2007 | MR | Zbl