Finiteness of Graded Generalized Local Cohomology Modules
Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 689-694

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two finitely generated graded modules over a homogeneous Noetherian ring $R=\bigoplus_{n\in\mathbb{N}_0}R_n$ with a local base ring $(R_0,\mathfrak{m}_0)$ and irrelevant ideal $R_{+}$ of $R$. We study the generalized local cohomology modules $H_\mathfrak{b}^i(M,N)$ with respect to the ideal $\mathfrak{b}=\mathfrak{b}_0+{R}_+$, where $\mathfrak{b}_0$ is an ideal of $R_0$. We prove that if $\operatorname{dim} R_0/\mathfrak{b}_0\le 1$, then the following cases hold: for all $i\ge 0$, the $R$-module $H_\mathfrak{b}^i(M,N)/{\mathfrak{a}_0H_\mathfrak{b}^i(M,N)}$ is Artinian, where $\sqrt{\mathfrak{a}_0+\mathfrak{b}_0}=\mathfrak{m}_0$; for all $i\ge 0$, the set $\operatorname{Ass}_{R_0}(H_\mathfrak{b}^i(M,N)_n)$ is asymptotically stable as $n\to{-\infty}$. Moreover, if $H_{\mathfrak{b}}^j(M,N)_n$ is a finitely generated $R_0$-module for all $n\le n_0$ and all $j$, where $n_0\in\mathbb{Z}$ and $i\in\mathbb{N}_0$, then for all $n\le n_0$, the set $\operatorname{Ass}_{R_0}(H_{\mathfrak{b}}^i(M,N)_n)$ is finite.
Keywords: local cohomology modules, generalized local cohomology modules, graded modules, Noetherian ring.
@article{MZM_2013_94_5_a4,
     author = {A. Mafi and H. Saremi},
     title = {Finiteness of {Graded} {Generalized} {Local} {Cohomology} {Modules}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {689--694},
     publisher = {mathdoc},
     volume = {94},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a4/}
}
TY  - JOUR
AU  - A. Mafi
AU  - H. Saremi
TI  - Finiteness of Graded Generalized Local Cohomology Modules
JO  - Matematičeskie zametki
PY  - 2013
SP  - 689
EP  - 694
VL  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a4/
LA  - ru
ID  - MZM_2013_94_5_a4
ER  - 
%0 Journal Article
%A A. Mafi
%A H. Saremi
%T Finiteness of Graded Generalized Local Cohomology Modules
%J Matematičeskie zametki
%D 2013
%P 689-694
%V 94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a4/
%G ru
%F MZM_2013_94_5_a4
A. Mafi; H. Saremi. Finiteness of Graded Generalized Local Cohomology Modules. Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 689-694. http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a4/