A Criterion for the Integral Equivalence of Two Generalized Convex Integer Polyhedra
Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 648-660.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of integral equivalence and formulate a criterion for the equivalence of two polyhedra having certain special properties. The category of polyhedra under consideration includes Klein polyhedra, which are the convex hulls of nonzero points of the lattice $\mathbb Z^3$ that belong to some $3$-dimensional simplicial cone with vertex at the origin, and therefore the criterion enables one to improve some results related to Klein polyhedra. In particular, we suggest a simplified formulation of a geometric analog of Lagrange's theorem on continued fractions in the three-dimensional case.
Keywords: integral equivalence of polyhedra, generalized convex polyhedron, Klein polyhedron, three-dimensional continued fraction.
@article{MZM_2013_94_5_a1,
     author = {A. V. Bykovskaya},
     title = {A {Criterion} for the {Integral} {Equivalence} of {Two} {Generalized} {Convex} {Integer} {Polyhedra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {648--660},
     publisher = {mathdoc},
     volume = {94},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a1/}
}
TY  - JOUR
AU  - A. V. Bykovskaya
TI  - A Criterion for the Integral Equivalence of Two Generalized Convex Integer Polyhedra
JO  - Matematičeskie zametki
PY  - 2013
SP  - 648
EP  - 660
VL  - 94
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a1/
LA  - ru
ID  - MZM_2013_94_5_a1
ER  - 
%0 Journal Article
%A A. V. Bykovskaya
%T A Criterion for the Integral Equivalence of Two Generalized Convex Integer Polyhedra
%J Matematičeskie zametki
%D 2013
%P 648-660
%V 94
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a1/
%G ru
%F MZM_2013_94_5_a1
A. V. Bykovskaya. A Criterion for the Integral Equivalence of Two Generalized Convex Integer Polyhedra. Matematičeskie zametki, Tome 94 (2013) no. 5, pp. 648-660. http://geodesic.mathdoc.fr/item/MZM_2013_94_5_a1/

[1] J.-O. Moussafir, “Convex hulls of integral points”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. V, Zap. nauchn. sem. POMI, 266, POMI, SPb., 2000, 188–217 | MR | Zbl

[2] H. Tsuchihashi, “Higher-dimensional analogues of periodic continued fractions and cusp singularities”, Tohoku Math. J. (2), 35:4 (1983), 607–639 | DOI | MR | Zbl

[3] E. I. Korkina, “Dvumernye tsepnye drobi. Samye prostye primery”, Osobennosti gladkikh otobrazhenii s dopolnitelnymi strukturami, Sbornik statei, Tr. MIAN, 209, Nauka, M., 1995, 143–166 | MR | Zbl

[4] O. N. German, E. L. Lakshtanov, “O mnogomernom obobschenii teoremy Lagranzha dlya tsepnykh drobei”, Izv. RAN. Ser. matem., 72:1 (2008), 51–66 | DOI | MR | Zbl