On the Lipschitz Property of a Class of Mappings
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 591-599

Voir la notice de l'article provenant de la source Math-Net.Ru

Open discrete annular $Q$-mappings with respect to the $p$-modulus in $\mathbb R^n$, $n\ge 2$, are considered in this paper. It is established that such mappings are finite Lipschitz for $n-1$ if the integral mean value of the function $Q(x)$ over all infinitesimal balls $B(x_0,\varepsilon)$ is finite everywhere.
Keywords: open discrete annular $Q$-mapping, $p$-modulus of a family of curves, finite Lipschitz mapping, homeomorphism
Mots-clés : Lebesgue measure, condenser.
@article{MZM_2013_94_4_a9,
     author = {R. R. Salimov},
     title = {On the {Lipschitz} {Property} of a {Class} of {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {591--599},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a9/}
}
TY  - JOUR
AU  - R. R. Salimov
TI  - On the Lipschitz Property of a Class of Mappings
JO  - Matematičeskie zametki
PY  - 2013
SP  - 591
EP  - 599
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a9/
LA  - ru
ID  - MZM_2013_94_4_a9
ER  - 
%0 Journal Article
%A R. R. Salimov
%T On the Lipschitz Property of a Class of Mappings
%J Matematičeskie zametki
%D 2013
%P 591-599
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a9/
%G ru
%F MZM_2013_94_4_a9
R. R. Salimov. On the Lipschitz Property of a Class of Mappings. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 591-599. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a9/