Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_4_a9, author = {R. R. Salimov}, title = {On the {Lipschitz} {Property} of a {Class} of {Mappings}}, journal = {Matemati\v{c}eskie zametki}, pages = {591--599}, publisher = {mathdoc}, volume = {94}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a9/} }
R. R. Salimov. On the Lipschitz Property of a Class of Mappings. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 591-599. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a9/
[1] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl
[2] F. W. Gehring, “Lipschitz mappings and the $p$-capacity of ring in $n$-space”, Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, 1971, 175–193 | MR | Zbl
[3] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, Springer Monogr. Math., Springer, New York, 2009 | MR | Zbl
[4] R. R. Salimov, “Absolyutnaya nepreryvnost na liniyakh i differentsiruemost odnogo obobscheniya kvazikonformnykh otobrazhenii”, Izv. RAN. Ser. matem., 72:5 (2008), 141–148 | DOI | MR | Zbl
[5] A. Golberg, “Differential properties of $(\alpha,Q)$-homeomorphisms”, Further Progress in Analysis, World Sci. Publ., Hackensack, NJ, 2009, 218–228 | MR | Zbl
[6] A. Golberg, “Integrally quasiconformal mappings in space”, Zb. prats In-tu matem. NAN Ukraïni, 7:2 (2010), 53–64 | Zbl
[7] Ch. J. Bishop , V. Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Int. J. Math. Math. Sci., 2003:22 (2003), 1397–1420 | DOI | MR | Zbl
[8] V. M. Miklyukov, Konformnoe otobrazhenie neregulyarnoi poverkhnosti i ego primeneniya, Izd-vo VolGU, Volgograd, 2005
[9] Yu. F. Strugov, “Kompaktnost klassov otobrazhenii, kvazikonformnykh v srednem”, DAN SSSR, 243:4 (1978), 859–861 | MR | Zbl
[10] R. R. Salimov, E. A. Sevostyanov, “Teoriya koltsevykh $Q$-otobrazhenii v geometricheskoi teorii funktsii”, Matem. sb., 201:6 (2010), 131–158 | DOI | MR | Zbl
[11] S. Saks, Teoriya integrala, IL, M., 1949 | MR | Zbl
[12] R. R. Salimov, “On finitely Lipschitz space mappings”, Sib. elektron. matem. izv., 8 (2011), 284–295 | MR
[13] R. R. Salimov, “Lokalnoe povedenie obobschennykh kvaziizometrii”, Dop. NAN Ukraïni, 2011, no. 6, 23–28 | Zbl
[14] S. Rickman, Quasiregular Mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl
[15] O. Martio , S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 448 (1969), 40 pp. | MR | Zbl
[16] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR | Zbl
[17] V. G. Mazya, “Klassy oblastei, mer i emkostei v teorii prostranstv differentsiruemykh funktsii”, Analiz – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 26, VINITI, M., 1988, 159–228 | MR | Zbl
[18] V. I. Kruglikov, “Emkosti kondensatorov i prostranstvennye otobrazheniya, kvazikonformnye v srednem”, Matem. sb., 130(172):2(6) (1986), 185–206 | MR | Zbl
[19] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ., 28, Amer. Math. Soc., New York, 1942 | MR | Zbl