) function defined on the positive semiaxis satisfies the Hausdorff–Young type inequality with a positive weight in the right complex half-plane if and only if the weight is a Carleson measure. In addition, Carleson's weighted $L^p$ inequality for the harmonic extension is given with a numeric constant.
Mots-clés : Laplace transform, Fourier transform, Poisson integral.
@article{MZM_2013_94_4_a8,
author = {S. Yu. Sadov},
title = {Characterization of {Carleson} {Measures} by the {Hausdorff{\textendash}Young} {Property}},
journal = {Matemati\v{c}eskie zametki},
pages = {582--590},
year = {2013},
volume = {94},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a8/}
}
S. Yu. Sadov. Characterization of Carleson Measures by the Hausdorff–Young Property. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 582-590. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a8/
[1] K. I. Babenko, “Ob odnom neravenstve v teorii integralov Fure”, Izv. AN SSSR. Ser. matem., 25:4 (1961), 531–542 | MR | Zbl
[2] W. Beckner, “Inequalities in Fourier analysis”, Ann. of Math. (2), 102:1 (1975), 159–182 | DOI | MR | Zbl
[3] S. Bloom, “Hardy integral estimates for the Laplace transform”, Proc. Amer. Math. Soc., 116:2 (1992), 417–426 | DOI | MR | Zbl
[4] A. E. Merzon, F.-O. Speck, T. J. Villalba-Vega, “On the weak solution of the Neumann problem for the 2D Helmholtz equation in a convex cone and $H^s$ regularity”, Math. Methods Appl. Sci., 34:1 (2011), 24–43 | DOI | MR | Zbl
[5] S. Sadov, A. Merzon, “$L^2$-estimates for the Laplace transform along a family of hyperbolas in the right half-plane”, Commun. Math. Anal., 2011, Conference 3, 204–208 | MR | Zbl
[6] G. H. Hardy, “The constants of certain inequalities”, J. London Math. Soc., 8:2 (1933), 114–119 | DOI | MR | Zbl
[7] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl
[8] R. R. Coifman, Y. Meyer, E. M. Stein, “Some new function spaces and their applications to harmonic analysis”, J. Funct. Anal., 62:2 (1985), 304–335 | DOI | MR | Zbl