On a Trivial Monodromy Criterion for the Sturm--Liouville Equation
Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 552-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a necessary and sufficient condition for the equation $-y''(z)+q(z)y(z)=\lambda y(z)$ to be monodromy-free; here $z\in \gamma$ and $\gamma$ is a piecewise smooth curve which is the boundary of a convex bounded domain.
Mots-clés : Sturm–Liouville equation, monodromy matrix
Keywords: monodromy-free potential, meromorphic function, Sokhotskii–Plemelj formula, Gronwall inequality, Hardy class.
@article{MZM_2013_94_4_a5,
     author = {Kh. K. Ishkin},
     title = {On a {Trivial} {Monodromy} {Criterion} for the {Sturm--Liouville} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {552--568},
     publisher = {mathdoc},
     volume = {94},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a5/}
}
TY  - JOUR
AU  - Kh. K. Ishkin
TI  - On a Trivial Monodromy Criterion for the Sturm--Liouville Equation
JO  - Matematičeskie zametki
PY  - 2013
SP  - 552
EP  - 568
VL  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a5/
LA  - ru
ID  - MZM_2013_94_4_a5
ER  - 
%0 Journal Article
%A Kh. K. Ishkin
%T On a Trivial Monodromy Criterion for the Sturm--Liouville Equation
%J Matematičeskie zametki
%D 2013
%P 552-568
%V 94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a5/
%G ru
%F MZM_2013_94_4_a5
Kh. K. Ishkin. On a Trivial Monodromy Criterion for the Sturm--Liouville Equation. Matematičeskie zametki, Tome 94 (2013) no. 4, pp. 552-568. http://geodesic.mathdoc.fr/item/MZM_2013_94_4_a5/

[1] J. J. Duistermaat, F. A. Grünbaum, “Differential equations in the spectral parameter”, Comm. Math. Phys., 103:2 (1986), 177–240 | DOI | MR | Zbl

[2] Kh. K. Ishkin, “O kriterii odnoznachnosti reshenii uravneniya Shturma–Liuvillya”, Matem. zametki, 84:4 (2008), 552–566 | DOI | MR | Zbl

[3] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl

[4] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, GITTL, M., 1956 | MR | Zbl

[5] B. M. Levitan, I. S. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR | Zbl

[6] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[7] V. E. Lyantse, “Analog obratnoi zadachi teorii rasseyaniya dlya nesamosopryazhennogo operatora”, Matem. sb., 72(114):4 (1967), 537–557 | MR | Zbl

[8] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR | Zbl