Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_3_a4, author = {S. V. Lapin}, title = {Homotopy {Properties} of {Differential} {Lie} {Modules} over {Curved} {Coalgebras} and {Koszul} {Duality}}, journal = {Matemati\v{c}eskie zametki}, pages = {354--372}, publisher = {mathdoc}, volume = {94}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a4/} }
S. V. Lapin. Homotopy Properties of Differential Lie Modules over Curved Coalgebras and Koszul Duality. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 354-372. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a4/
[1] L. E. Positselskii, “Neodnorodnaya kvadratichnaya dvoistvennost i krivizna”, Funkts. analiz i ego pril., 27:3 (1993), 57–66 | MR | Zbl
[2] S. B. Priddy, “Koszul resolutions”, Trans. Amer. Math. Soc., 152 (1970), 39–60 | DOI | MR | Zbl
[3] J. Hirsh, J. Millés, Curved Koszul Duality Theory, arXiv: 1008.5368v1
[4] V. Ginzburg, M. Kapranov, “Koszul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 | DOI | MR | Zbl
[5] V. A. Smirnov, “Algebry Li nad operadami i ikh primenenie v teorii gomotopii”, Izv. RAN. Ser. matem., 62:3 (1998), 121–154 | DOI | MR | Zbl
[6] J. P. May, Simplicial Objects in Algebraic Topology, Van Nostrand Math. Stud., 11, D. Van Nostrand, Princeton, NJ, 1967 | MR | Zbl
[7] V. A. Smirnov, Simplitsialnye i operadnye metody v algebraicheskoi topologii, Faktorial, M., 2002
[8] S. V. Lapin, “Differentsialnye vozmuscheniya i $D_\infty $-differentsialnye moduli”, Matem. sb., 192:11 (2001), 55–76 | DOI | MR | Zbl
[9] S. V. Lapin, “$D_\infty$-differentsialnye $E_\infty$-algebry i spektralnye posledovatelnosti rassloenii”, Matem. sb., 198:10 (2007), 3–30 | DOI | MR | Zbl
[10] S. V. Lapin, “Multiplikativnaya $A_\infty$-struktura v spektralnykh posledovatelnostyakh rassloenii”, Fundament. i prikl. matem., 14:6 (2008), 141–175 | MR