Homogenizing the Viscoelasticity Problem with Long-Term Memory
Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 441-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of integro-differential equations describing the small oscillations of an $\varepsilon$-periodic viscoelastic material with long-term memory is considered. Using the two-scale convergence method, we construct the system of homogenized equations and prove the strong convergence as $\varepsilon \to 0$ of the solutions of prelimit problems to the solution of the homogenized problem in the norm of the space $L^2$.
Keywords: viscoelasticity problem with long-term memory, homogenized viscoelasticity problem, system of integro-differential equations, two-scale convergence method, Galerkin method
Mots-clés : Laplace transform.
@article{MZM_2013_94_3_a10,
     author = {V. V. Shumilova},
     title = {Homogenizing the {Viscoelasticity} {Problem} with {Long-Term} {Memory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {441--454},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a10/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - Homogenizing the Viscoelasticity Problem with Long-Term Memory
JO  - Matematičeskie zametki
PY  - 2013
SP  - 441
EP  - 454
VL  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a10/
LA  - ru
ID  - MZM_2013_94_3_a10
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T Homogenizing the Viscoelasticity Problem with Long-Term Memory
%J Matematičeskie zametki
%D 2013
%P 441-454
%V 94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a10/
%G ru
%F MZM_2013_94_3_a10
V. V. Shumilova. Homogenizing the Viscoelasticity Problem with Long-Term Memory. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 441-454. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a10/

[1] H. C. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl

[2] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[3] Z. Abdessamad, I. Kostin, G. Panasenko, V. P. Smyshlyaev, “Homogenization of thermo-viscoelastic Kelvin–Voigt model”, Compt. Rend. Méc., 335:8 (2007), 423–429 | DOI | Zbl

[4] Z. Abdessamad, I. Kostin, G. Panasenko, V. P. Smyshlyaev, “Memory effect in homogenization of a viscoelastic Kelvin–Voigt model with time-dependent coefficients”, Math. Models Methods Appl. Sci., 19:9 (2009), 1603–1630 | DOI | MR | Zbl

[5] R. P. Gilbert, A. Panchenko, X. Xie, “Homogenization of a viscoelastic matrix in linear frictional contact”, Math. Methods Appl. Sci., 28:3 (2005), 309–328 | DOI | MR | Zbl

[6] A. S. Shamaev, V. V. Shumilova, “Usrednenie uravnenii akustiki dlya chastichno perforirovannogo vyazkouprugogo materiala s vyazkoi zhidkostyu”, Dokl. RAN, 436:2 (2011), 199–202 | MR

[7] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl

[8] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | MR | Zbl

[9] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[10] V. V. Zhikov, “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | DOI | MR | Zbl

[11] V. V. Zhikov, “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matem., 66:2 (2002), 81–148 | DOI | MR | Zbl

[12] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | MR | Zbl

[13] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[14] V. A. Ditkin, A. P. Prudnikov, Integralnye preobrazovaniya i operatsionnoe ischislenie, Spravochnaya matematicheskaya biblioteka, Fizmatgiz, M., 1961 | Zbl

[15] G. Dech, Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i $Z$-preobrazovaniya. S prilozheniem tablits, sostavlennykh R. Gershelem, Fiziko-matematicheskaya biblioteka inzhenera, Nauka, M., 1971 | MR | Zbl