Homogenizing the Viscoelasticity Problem with Long-Term Memory
Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 441-454

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of integro-differential equations describing the small oscillations of an $\varepsilon$-periodic viscoelastic material with long-term memory is considered. Using the two-scale convergence method, we construct the system of homogenized equations and prove the strong convergence as $\varepsilon \to 0$ of the solutions of prelimit problems to the solution of the homogenized problem in the norm of the space $L^2$.
Keywords: viscoelasticity problem with long-term memory, homogenized viscoelasticity problem, system of integro-differential equations, two-scale convergence method, Galerkin method
Mots-clés : Laplace transform.
@article{MZM_2013_94_3_a10,
     author = {V. V. Shumilova},
     title = {Homogenizing the {Viscoelasticity} {Problem} with {Long-Term} {Memory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {441--454},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a10/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - Homogenizing the Viscoelasticity Problem with Long-Term Memory
JO  - Matematičeskie zametki
PY  - 2013
SP  - 441
EP  - 454
VL  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a10/
LA  - ru
ID  - MZM_2013_94_3_a10
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T Homogenizing the Viscoelasticity Problem with Long-Term Memory
%J Matematičeskie zametki
%D 2013
%P 441-454
%V 94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a10/
%G ru
%F MZM_2013_94_3_a10
V. V. Shumilova. Homogenizing the Viscoelasticity Problem with Long-Term Memory. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 441-454. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a10/