Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_3_a10, author = {V. V. Shumilova}, title = {Homogenizing the {Viscoelasticity} {Problem} with {Long-Term} {Memory}}, journal = {Matemati\v{c}eskie zametki}, pages = {441--454}, publisher = {mathdoc}, volume = {94}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a10/} }
V. V. Shumilova. Homogenizing the Viscoelasticity Problem with Long-Term Memory. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 441-454. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a10/
[1] H. C. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl
[2] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[3] Z. Abdessamad, I. Kostin, G. Panasenko, V. P. Smyshlyaev, “Homogenization of thermo-viscoelastic Kelvin–Voigt model”, Compt. Rend. Méc., 335:8 (2007), 423–429 | DOI | Zbl
[4] Z. Abdessamad, I. Kostin, G. Panasenko, V. P. Smyshlyaev, “Memory effect in homogenization of a viscoelastic Kelvin–Voigt model with time-dependent coefficients”, Math. Models Methods Appl. Sci., 19:9 (2009), 1603–1630 | DOI | MR | Zbl
[5] R. P. Gilbert, A. Panchenko, X. Xie, “Homogenization of a viscoelastic matrix in linear frictional contact”, Math. Methods Appl. Sci., 28:3 (2005), 309–328 | DOI | MR | Zbl
[6] A. S. Shamaev, V. V. Shumilova, “Usrednenie uravnenii akustiki dlya chastichno perforirovannogo vyazkouprugogo materiala s vyazkoi zhidkostyu”, Dokl. RAN, 436:2 (2011), 199–202 | MR
[7] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl
[8] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | MR | Zbl
[9] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl
[10] V. V. Zhikov, “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | DOI | MR | Zbl
[11] V. V. Zhikov, “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matem., 66:2 (2002), 81–148 | DOI | MR | Zbl
[12] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | MR | Zbl
[13] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[14] V. A. Ditkin, A. P. Prudnikov, Integralnye preobrazovaniya i operatsionnoe ischislenie, Spravochnaya matematicheskaya biblioteka, Fizmatgiz, M., 1961 | Zbl
[15] G. Dech, Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i $Z$-preobrazovaniya. S prilozheniem tablits, sostavlennykh R. Gershelem, Fiziko-matematicheskaya biblioteka inzhenera, Nauka, M., 1971 | MR | Zbl