Bose--Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications
Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 237-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the spinodal is constructed by using the values of the isotherm of a new ideal gas at the point $\mu=0$ and as $\mu=-\infty$ on the ($Z$$P$)-diagram. For a nonideal gas, a generalization of the type of Bogoliubov–Vlasov self-consistent field is given if the potential of pairwise interaction is known. A “two-liquid” model of the supercritical region, i.e., a superfluid “liquid” (molecules–monomers) and a normal “liquid” (clusters), is constructed. An application to the transport problems is given.
Keywords: two-liquid model, supercritical state, nonideal gas, Bose-gas, clusters, monomers.
@article{MZM_2013_94_2_a7,
     author = {V. P. Maslov},
     title = {Bose--Einstein-Type {Distribution} for {Nonideal} {Gas.} {Two-Liquid} {Model} of {Supercritical} {States} and {Its} {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {237--245},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a7/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Bose--Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications
JO  - Matematičeskie zametki
PY  - 2013
SP  - 237
EP  - 245
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a7/
LA  - ru
ID  - MZM_2013_94_2_a7
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Bose--Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications
%J Matematičeskie zametki
%D 2013
%P 237-245
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a7/
%G ru
%F MZM_2013_94_2_a7
V. P. Maslov. Bose--Einstein-Type Distribution for Nonideal Gas. Two-Liquid Model of Supercritical States and Its Applications. Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 237-245. http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a7/

[1] V. P. Maslov, “On a serious mathematical error in the “Mathematical Encyclopedia” related to the solution of the Gibbs paradox”, Math. Notes, 93:5 (2013), 732–739

[2] V. P. Maslov, “Old Mathematical Errors in Statistical Physics”, Russian J. Math. Phys., 20:2 (2013), 214–229

[3] N. N. Bogolyubov, Izbrannye trudy. V 3-kh t. T. 2., Naukova Dumka, Kiev, 1970

[4] V. P. Maslov, “Uravnenie Vlasova”, Entsiklopediya nizkotemperaturnoi plazmy. Ser. V, T. VII–1/3. Matematicheskoe modelirovanie v nizkotemperaturnoi plazme, ed. V. E. Fortov, Yanus-K, M., 2008, 209–242

[5] V. P. Maslov, “Matematicheskie aspekty slabo neidealnogo boze- i fermi-gaza na kristallicheskoi podlozhke”, Funkts. analiz i ego pril., 37:2 (2003), 16–27 | DOI | MR | Zbl

[6] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1977 | MR | Zbl

[7] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika. T. 9. Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR

[8] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka, URSS, M., 2000

[9] V. P. Maslov, Kvantovanie termodinamiki i ultravtorichnoe kvantovanie, IKI, M., 2006

[10] V. P. Maslov, “Quasi-particles associated with Lagrangian manifolds corresponding to semiclassical self-consistent fields. IV”, Russian J. Math. Phys., 3:3 (1995), 401–406 ; “Quasi-particles associated with Lagrangian manifolds and (in the ergodic case) with constant energy manifolds corresponding to semiclassical self-consistent fields. V”, Russian J. Math. Phys., 3:4 (1995), 529–534 ; “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields. VI”, Russian J. Math. Phys., 4:1 (1996), 117–122 ; “Quasi-particles associated with isoenergetic manifolds corresponding to classical self-consistent fields. VII”, Russian J. Math. Phys., 4:2 (1996), 265–270 ; “Quasi-particles associated with isoenergetic manifolds corresponding to classical self-consistent fields. VIII”, Russian J. Math. Phys., 4:4 (1996), 539–546 ; “Quasi-particles associated with isoenergetic manifolds corresponding to classical self-consistent fields. IX”, Russian J. Math. Phys., 5:1 (1997), 123–130 ; “Quasi-particles associated with isoenergetic manifolds corresponding to classical self-consistent fields. X”, Russian J. Math. Phys., 5:2 (1997), 273–278 ; “Quasi-particles associated with isoenergetic manifolds corresponding to classical self-consistent fields. XI”, Russian J. Math. Phys., 5:3 (1997), 405–412 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[11] V. P. Maslov, “Spektralnye serii, sverkhtekuchest i vysokotemperaturnaya sverkhprovodimost”, Matem. zametki, 58:6 (1995), 933–936 | MR | Zbl

[12] V. P. Maslov, “Spectral series and quantization of thermodynamics”, Russian J. Math. Phys., 9:1 (2002), 112–122 | MR | Zbl

[13] Fizicheskii entsiklopedicheskii slovar, T. 5, Sovetskaya entsiklopediya, M., 1966

[14] V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, E. N. Tsiok, “Gde nakhoditsya oblast sverkhkriticheskogo flyuida na fazovoi diagramme?”, UFN, 182:11 (2012), 1137–1156 | DOI

[15] P. Lotito, J.-P. Quadrat, E. Mancinelli, “Traffic assignment Gibbs–Maslov semirings”, Idempotent Mathematics and Mathematical Physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 209–219 | MR | Zbl

[16] V. P. Maslov, “Effekt izmeritelnogo pribora v “boze-kondensate” klassicheskogo gaza, v fazovom perekhode i v eksperimentakh s otritsatelnym davleniem”, TMF, 175:1 (2013), 93–131 | DOI

[17] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[18] V. P. Maslov, “Analiticheskoe prodolzhenie asimptoticheskikh formul i aksiomatika termodinamiki i kvazitermodinamiki”, Funkts. analiz i ego pril., 28:4 (1994), 28–41 | MR | Zbl

[19] A. I. Esina, A. I. Shafarevich, “Usloviya kvantovaniya na rimanovykh poverkhnostyakh i kvaziklassicheskii spektr operatora Shredingera s kompleksnym potentsialom”, Matem. zametki, 88:2 (2010), 229–248 | DOI | MR

[20] H. Roohian, A. I. Shafarevich, “Semiclassical asymptotics of the spectrum of a nonselfadjoint operator on the sphere”, Russian J. Math. Phys., 16:2 (2009), 309–314 | DOI | MR | Zbl

[21] H. Roohian, A. I. Shafarevich, “Semiclassical asymptotic behavior of the spectrum of a nonselfadjoint elliptic operator on a two-dimensional surface of revolution”, Russian J. Math. Phys., 17:3 (2010), 328–333 | DOI | MR | Zbl

[22] A. I. Esina, A. I. Shafarevich, “Analogs of Bohr–Sommerfeld–Maslov quantization conditions on Riemann surfaces and spectral series of nonself-adjoint operators”, Russian J. Math. Phys., 20:2 (2013), 172–181