On the Homeomorphism of Continuous Mappings
Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 183-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $\mathcal{C}(X)$ the partially ordered (PO) set of all continuous epimorphisms of a space $X$ under the natural identification of homeomorphic epimorphisms. The following homeomorphism theorem for bicompacta is implicitly contained in Magill's 1968 paper: two bicompacta $X$ and $Y$ are homeomorphic if and only if the PO sets $\mathcal{C}(X)$ and $\mathcal{C}(Y)$ are isomorphic. In the present paper, Magill's theorem is extended to the category of mappings in which the role of bicompacta is played by perfect mappings. The results are obtained in two versions, namely, in the category $\mathit{TOP}_Z$ (of triangular commutative diagrams) and in the category $\mathit{MAP}$ (of quadrangular commutative diagrams).
Keywords: partially ordered set, continuous epimorphism, homeomorphism, commutative diagram, perfect mapping.
Mots-clés : bicompactum
@article{MZM_2013_94_2_a2,
     author = {E. N. Belyanova and I. V. Bludova},
     title = {On the {Homeomorphism} of {Continuous} {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {183--189},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a2/}
}
TY  - JOUR
AU  - E. N. Belyanova
AU  - I. V. Bludova
TI  - On the Homeomorphism of Continuous Mappings
JO  - Matematičeskie zametki
PY  - 2013
SP  - 183
EP  - 189
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a2/
LA  - ru
ID  - MZM_2013_94_2_a2
ER  - 
%0 Journal Article
%A E. N. Belyanova
%A I. V. Bludova
%T On the Homeomorphism of Continuous Mappings
%J Matematičeskie zametki
%D 2013
%P 183-189
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a2/
%G ru
%F MZM_2013_94_2_a2
E. N. Belyanova; I. V. Bludova. On the Homeomorphism of Continuous Mappings. Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 183-189. http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a2/

[1] K. D. Magill, Jr., “The lattice of compactifications of a locally compact space”, Proc. London Math Soc. (3), 18:2 (1968), 231–244 | DOI | MR | Zbl

[2] I. V. Bludova, G. Nordo, B. A. Pasynkov, “On the homeomorphism of spaces and Magill-type theorems”, Questions Answers Gen. Topology, 19:1 (2001), 95–105 | MR | Zbl

[3] M. C. Rayburn, “On Hausdorff compactifications”, Pacific J. Math., 44:2 (1973), 707–714 | DOI | MR | Zbl

[4] G. Nordo, B. A. Pasynkov, “Magill-type theorems for mappings”, Int. J. Math. Math. Sci., 2004:26 (2004), 1379–1391 | DOI | MR | Zbl

[5] E. N. Belyanova, Narosty rasshirenii lokalno bikompaktnykh prostranstv i otobrazhenii. Teoremy o gomeomorfizme prostranstv i otobrazhenii, Dis. kand. fiz.-matem. nauk, MPGU, M., 2007