Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane
Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 163-174
Voir la notice de l'article provenant de la source Math-Net.Ru
Two theorems on conditions under which a two-dimensional surface in Euclidean 5-space is contained in a hypersphere and one theorem on conditions under which such a surface is contained in a hyperplane are proved. The notion of hyperbolic and elliptic domains on a surface are introduced. The conditions in the theorems are expressed in terms of the behavior of the plane of the normal curvature ellipse of the surface and certain boundary conditions. An example which shows that the boundary conditions are essential is constructed.
Keywords:
hyperspherical surface, hyperplanar surface, ellipse of normal curvature, hyperbolic domain
Mots-clés : elliptic domain, parabolic domain.
Mots-clés : elliptic domain, parabolic domain.
@article{MZM_2013_94_2_a0,
author = {Yu. A. Aminov and Ya. S. Nasedkina},
title = {Conditions for a {Two-Dimensional} {Surface} in $E^5$ to {Be} {Contained} in a {Hypersphere} or a {Hyperplane}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--174},
publisher = {mathdoc},
volume = {94},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/}
}
TY - JOUR AU - Yu. A. Aminov AU - Ya. S. Nasedkina TI - Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane JO - Matematičeskie zametki PY - 2013 SP - 163 EP - 174 VL - 94 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/ LA - ru ID - MZM_2013_94_2_a0 ER -
%0 Journal Article %A Yu. A. Aminov %A Ya. S. Nasedkina %T Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane %J Matematičeskie zametki %D 2013 %P 163-174 %V 94 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/ %G ru %F MZM_2013_94_2_a0
Yu. A. Aminov; Ya. S. Nasedkina. Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane. Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/