Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane
Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 163-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two theorems on conditions under which a two-dimensional surface in Euclidean 5-space is contained in a hypersphere and one theorem on conditions under which such a surface is contained in a hyperplane are proved. The notion of hyperbolic and elliptic domains on a surface are introduced. The conditions in the theorems are expressed in terms of the behavior of the plane of the normal curvature ellipse of the surface and certain boundary conditions. An example which shows that the boundary conditions are essential is constructed.
Keywords: hyperspherical surface, hyperplanar surface, ellipse of normal curvature, hyperbolic domain
Mots-clés : elliptic domain, parabolic domain.
@article{MZM_2013_94_2_a0,
     author = {Yu. A. Aminov and Ya. S. Nasedkina},
     title = {Conditions for a {Two-Dimensional} {Surface} in $E^5$ to {Be} {Contained} in a {Hypersphere} or a {Hyperplane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--174},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
AU  - Ya. S. Nasedkina
TI  - Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane
JO  - Matematičeskie zametki
PY  - 2013
SP  - 163
EP  - 174
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/
LA  - ru
ID  - MZM_2013_94_2_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%A Ya. S. Nasedkina
%T Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane
%J Matematičeskie zametki
%D 2013
%P 163-174
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/
%G ru
%F MZM_2013_94_2_a0
Yu. A. Aminov; Ya. S. Nasedkina. Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane. Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/

[1] Yu. A. Aminov, Differentsialnaya geometriya i topologiya krivykh, Nauka, M., 1987 | MR | Zbl

[2] Yu. A. Aminov, Geometriya podmnogoobrazii, Naukova dumka, Kiev, 2002 | Zbl

[3] Ya. S. Nasedkina (Ya. S. Tandura), “Ob usloviyakh prinadlezhnosti poverkhnosti trekhmernoi sfere”, Vestn. KhNU. Ser. matem., prikl. metem. i mekh., 790(57) (2007), 140–145

[4] B.-y. Chen, K. Yano, “Integral formulas for submanifolds and their applications”, J. Differential Geometry, 5 (1971), 467–477 | MR | Zbl

[5] S. M. Moraes, M. C. Romero-Fuster, F. Sánchez-Bringas, “Principal configuration and umbilicity of submanifolds in $R^n$”, Bull. Belg. Math. Soc. Simon Stevin, 11:2 (2003), 227–245 | MR | Zbl

[6] A. P. Kartashev, B. L. Rozhdestvenskii, Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1976 | MR | Zbl

[7] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR | Zbl

[8] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl

[9] B. V. Boyarskii, “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43:4 (1957), 451–503 | MR | Zbl

[10] M. A. Lavrentev, “Osnovnaya teorema teorii kvazi-konformnykh otobrazhenii ploskikh oblastei”, Izv. AN SSSR. Ser. matem., 12:6 (1948), 513–554 | MR | Zbl