Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_2_a0, author = {Yu. A. Aminov and Ya. S. Nasedkina}, title = {Conditions for a {Two-Dimensional} {Surface} in $E^5$ to {Be} {Contained} in a {Hypersphere} or a {Hyperplane}}, journal = {Matemati\v{c}eskie zametki}, pages = {163--174}, publisher = {mathdoc}, volume = {94}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/} }
TY - JOUR AU - Yu. A. Aminov AU - Ya. S. Nasedkina TI - Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane JO - Matematičeskie zametki PY - 2013 SP - 163 EP - 174 VL - 94 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/ LA - ru ID - MZM_2013_94_2_a0 ER -
%0 Journal Article %A Yu. A. Aminov %A Ya. S. Nasedkina %T Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane %J Matematičeskie zametki %D 2013 %P 163-174 %V 94 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/ %G ru %F MZM_2013_94_2_a0
Yu. A. Aminov; Ya. S. Nasedkina. Conditions for a Two-Dimensional Surface in $E^5$ to Be Contained in a Hypersphere or a Hyperplane. Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a0/
[1] Yu. A. Aminov, Differentsialnaya geometriya i topologiya krivykh, Nauka, M., 1987 | MR | Zbl
[2] Yu. A. Aminov, Geometriya podmnogoobrazii, Naukova dumka, Kiev, 2002 | Zbl
[3] Ya. S. Nasedkina (Ya. S. Tandura), “Ob usloviyakh prinadlezhnosti poverkhnosti trekhmernoi sfere”, Vestn. KhNU. Ser. matem., prikl. metem. i mekh., 790(57) (2007), 140–145
[4] B.-y. Chen, K. Yano, “Integral formulas for submanifolds and their applications”, J. Differential Geometry, 5 (1971), 467–477 | MR | Zbl
[5] S. M. Moraes, M. C. Romero-Fuster, F. Sánchez-Bringas, “Principal configuration and umbilicity of submanifolds in $R^n$”, Bull. Belg. Math. Soc. Simon Stevin, 11:2 (2003), 227–245 | MR | Zbl
[6] A. P. Kartashev, B. L. Rozhdestvenskii, Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1976 | MR | Zbl
[7] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR | Zbl
[8] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959 | MR | Zbl
[9] B. V. Boyarskii, “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43:4 (1957), 451–503 | MR | Zbl
[10] M. A. Lavrentev, “Osnovnaya teorema teorii kvazi-konformnykh otobrazhenii ploskikh oblastei”, Izv. AN SSSR. Ser. matem., 12:6 (1948), 513–554 | MR | Zbl