How Many Different Cascades on a Surface Can Have Coinciding Hyperbolic Attractors?
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 109-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the number of essentially nonconjugate (i.e., not being iterations of topologically conjugate) diffeomorphisms of a surface having homeomorphic one-dimensional hyperbolic attractors can be arbitrarily large, provided that the genus of the surface is large enough. A lower bound for this number depending on the surface genus is given. The corresponding result for pseudo-Anosov homeomorphisms is stated.
Keywords: surface diffeomorphism, essentially nonconjugate surface diffeomorphisms, one-dimensional hyperbolic attractor, pseudo-Anosov homeomorphism.
Mots-clés : cascade
@article{MZM_2013_94_1_a8,
     author = {A. Yu. Zhirov},
     title = {How {Many} {Different} {Cascades} on a {Surface} {Can} {Have} {Coinciding} {Hyperbolic} {Attractors?}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a8/}
}
TY  - JOUR
AU  - A. Yu. Zhirov
TI  - How Many Different Cascades on a Surface Can Have Coinciding Hyperbolic Attractors?
JO  - Matematičeskie zametki
PY  - 2013
SP  - 109
EP  - 121
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a8/
LA  - ru
ID  - MZM_2013_94_1_a8
ER  - 
%0 Journal Article
%A A. Yu. Zhirov
%T How Many Different Cascades on a Surface Can Have Coinciding Hyperbolic Attractors?
%J Matematičeskie zametki
%D 2013
%P 109-121
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a8/
%G ru
%F MZM_2013_94_1_a8
A. Yu. Zhirov. How Many Different Cascades on a Surface Can Have Coinciding Hyperbolic Attractors?. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 109-121. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a8/

[1] S. Kh. Aranson, V. Z. Grines, “Topologicheskaya klassifikatsiya kaskadov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 45:1(271) (1990), 3–32 | MR | Zbl

[2] V. Grines, E. Zhuzhoma, “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667 | DOI | MR | Zbl

[3] R. V. Plykin, “O geometrii giperbolicheskikh attraktorov gladkikh kaskadov”, UMN, 39:6(240) (1984), 75–113 | MR | Zbl

[4] A. Yu. Zhirov, “Kombinatorika odnomernykh giperbolicheskikh attraktorov diffeomorfizmov poverkhnostei”, Dinamicheskie sistemy i smezhnye voprosy geometrii, Sbornik statei. Posvyaschaetsya pamyati akademika Andreya Andreevicha Bolibrukha, Tr. MIAN, 244, Nauka, M., 2004, 143–215 | MR | Zbl

[5] R. V. Plykin, “K probleme topologicheskoi klassifikatsii strannykh attraktorov dinamicheskikh sistem”, UMN, 57:6(348) (2002), 123–166 | DOI | MR | Zbl

[6] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl

[7] Travaux de Thurston sur les surfaces. Séminaire Orsay, Astérisque, 66–67, Soc. Math. France, Paris, 1979 | MR | Zbl

[8] A. Yu. Zhirov, “O minimume dilatatsii psevdoanosovskikh diffeomorfizmov krendelya”, UMN, 50:1(301) (1995), 197–198 | MR | Zbl

[9] H. Minakawa, “Examples of pseudo-Anosov homeomorphisms with small dilatations”, J. Math. Sci. Univ. Tokyo, 13 (2006), 95–111 | MR | Zbl