Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_1_a8, author = {A. Yu. Zhirov}, title = {How {Many} {Different} {Cascades} on a {Surface} {Can} {Have} {Coinciding} {Hyperbolic} {Attractors?}}, journal = {Matemati\v{c}eskie zametki}, pages = {109--121}, publisher = {mathdoc}, volume = {94}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a8/} }
A. Yu. Zhirov. How Many Different Cascades on a Surface Can Have Coinciding Hyperbolic Attractors?. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 109-121. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a8/
[1] S. Kh. Aranson, V. Z. Grines, “Topologicheskaya klassifikatsiya kaskadov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 45:1(271) (1990), 3–32 | MR | Zbl
[2] V. Grines, E. Zhuzhoma, “On structurally stable diffeomorphisms with codimension one expanding attractors”, Trans. Amer. Math. Soc., 357:2 (2005), 617–667 | DOI | MR | Zbl
[3] R. V. Plykin, “O geometrii giperbolicheskikh attraktorov gladkikh kaskadov”, UMN, 39:6(240) (1984), 75–113 | MR | Zbl
[4] A. Yu. Zhirov, “Kombinatorika odnomernykh giperbolicheskikh attraktorov diffeomorfizmov poverkhnostei”, Dinamicheskie sistemy i smezhnye voprosy geometrii, Sbornik statei. Posvyaschaetsya pamyati akademika Andreya Andreevicha Bolibrukha, Tr. MIAN, 244, Nauka, M., 2004, 143–215 | MR | Zbl
[5] R. V. Plykin, “K probleme topologicheskoi klassifikatsii strannykh attraktorov dinamicheskikh sistem”, UMN, 57:6(348) (2002), 123–166 | DOI | MR | Zbl
[6] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl
[7] Travaux de Thurston sur les surfaces. Séminaire Orsay, Astérisque, 66–67, Soc. Math. France, Paris, 1979 | MR | Zbl
[8] A. Yu. Zhirov, “O minimume dilatatsii psevdoanosovskikh diffeomorfizmov krendelya”, UMN, 50:1(301) (1995), 197–198 | MR | Zbl
[9] H. Minakawa, “Examples of pseudo-Anosov homeomorphisms with small dilatations”, J. Math. Sci. Univ. Tokyo, 13 (2006), 95–111 | MR | Zbl