Spectral and Oscillatory Properties of a Linear Pencil of Fourth-Order Differential Operators
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 55-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the spectral and oscillatory properties of a linear operator pencil $A-\lambda B$, where the coefficient $A$ corresponds to the differential expression $(py'')''$ and the coefficient $B$ corresponds to the differential expression $-y''+cry$. In particular, it is shown that all negative eigenvalues of the pencil are simple and, under some additional conditions, the number of zeros of the corresponding eigenfunctions is related to the serial number of the corresponding eigenvalue.
Keywords: linear differential operator, initial boundary-value problem, pencil of operators, number of zeros of eigenfunctions.
@article{MZM_2013_94_1_a4,
     author = {J. Ben Amara and A. A. Vladimirov and A. A. Shkalikov},
     title = {Spectral and {Oscillatory} {Properties} of a {Linear} {Pencil} of {Fourth-Order} {Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a4/}
}
TY  - JOUR
AU  - J. Ben Amara
AU  - A. A. Vladimirov
AU  - A. A. Shkalikov
TI  - Spectral and Oscillatory Properties of a Linear Pencil of Fourth-Order Differential Operators
JO  - Matematičeskie zametki
PY  - 2013
SP  - 55
EP  - 67
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a4/
LA  - ru
ID  - MZM_2013_94_1_a4
ER  - 
%0 Journal Article
%A J. Ben Amara
%A A. A. Vladimirov
%A A. A. Shkalikov
%T Spectral and Oscillatory Properties of a Linear Pencil of Fourth-Order Differential Operators
%J Matematičeskie zametki
%D 2013
%P 55-67
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a4/
%G ru
%F MZM_2013_94_1_a4
J. Ben Amara; A. A. Vladimirov; A. A. Shkalikov. Spectral and Oscillatory Properties of a Linear Pencil of Fourth-Order Differential Operators. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 55-67. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a4/

[1] G. Heisecke, “Rand-Eigenwertprobleme $N(y)=\lambda P(y)$ bei $\lambda$-abhängingen Randbedingungen”, Mitt. Math. Sem. Giessen, 145 (1980), 1–74 | MR | Zbl

[2] C. I. Gheorghiu, I. S. Pop, “A modified Chebyshev–Tau method for a hydrodynamic stability problem”, Approximation and Optimization, Vol. II, Transilvania Press, Cluj-Napoca, 1997, 119–126 | MR | Zbl

[3] L. Collatz, Eigenwertprobleme und ihre numerische Behandlung, Akad. Verlag., Leipzig, 1945 | MR | Zbl

[4] R. G. Drazin, W. H. Reid, Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl

[5] A. A. Shkalikov, “Kak opredelit operator Orra–Zommerfelda?”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1998, no. 4, 36–43 | MR | Zbl

[6] C. C. Lin, The Theory of Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 1955 | MR | Zbl

[7] A. A. Shkalikov, C. Tretter, “Kamke problems. Properties of the eigenfunctions”, Math. Nachr., 170:1 (1994), 251–275 | DOI | MR | Zbl

[8] A. A. Shkalikov, C. Tretter, “Spectral analysis for linear pencils $N-\lambda P$ of ordinary differential operators”, Math. Nachr., 179:1 (1996), 275–305 | DOI | MR | Zbl

[9] R. Mennicken, M. Moller, Non-Self-Adjoint Boundary Eigenvalue Problems, North-Holland Math. Stud., 192, North-Holland Publ., Amsterdam, 2003 | MR

[10] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M., 1950 | MR | Zbl

[11] W. Leighton, Z. Nehari, “On the oscillation of solutions of self-adjoint linear differential equations of the fourth order”, Trans. Amer. Math. Soc., 89 (1958), 325–377 | DOI | MR

[12] A. Yu. Levin, G. D. Stepanov, “Odnomernye kraevye zadachi s operatorami, ne ponizhayuschimi chisla peremen znaka”, Sib. matem. zhurn., 17:3 (1976), 606—625 | MR | Zbl

[13] D. O. Banks, G. J. Kurowski, “A Prüfer transformation for the equation of vibrating beam subject to axial forces”, J. Differential Equations, 24:1 (1977), 57–74 | DOI | MR | Zbl

[14] U. Elias, “Eigenvalue problems for the equation $Ly=\lambda\rho(x)y=0$”, J. Differential Equations, 29:1 (1978), 28–57 | DOI | MR | Zbl

[15] P. Lancaster, A. Shkalikov, Qiang Ye, “Strongly definitizable linear pencils in Hilbert space”, Integral Equations Operator Theory, 17:3 (1993), 338–360 | DOI | MR | Zbl

[16] A. V. Borovskikh, Yu. V. Pokornyi, “Sistemy Chebysheva–Khaara v teorii razryvnykh yader Kelloga”, UMN, 49:3(297) (1994), 3–42 | MR | Zbl

[17] A. A. Vladimirov, “K ostsillyatsionnoi teorii zadachi Shturma–Liuvillya s singulyarnymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 49:9 (2009), 1609–1621 | Zbl

[18] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983 | MR | Zbl

[19] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[20] M. I. Neiman-zade, A. A. Shkalikov, “Operatory Shredingera s singulyarnymi potentsialami iz prostranstv multiplikatorov”, Matem. zametki, 66:5 (1999), 723–733 | DOI | MR | Zbl

[21] A. A. Vladimirov, “O skhodimosti posledovatelnostei obyknovennykh differentsialnykh operatorov”, Matem. zametki, 75:6 (2004), 941–943 | DOI | MR | Zbl

[22] A. A. Shkalikov, Zh. Ben Amara, “Ostsillyatsionnye teoremy dlya operatora Shturma–Liuvillya s potentsialami-raspredeleniyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2009, no. 3, 43–49 | MR

[23] Yu. V. Pokornyi, Zh. I. Bakhtina, M. B. Zvereva, S. A. Shabrov, Ostsillyatsionnyi metod Shturma v spektralnykh zadachakh, Fizmatlit, M., 2009 | Zbl

[24] Zh. Ben Amara, A. A. Vladimirov, “Ob ostsillyatsii sobstvennykh funktsii zadachi chetvertogo poryadka so spektralnym parametrom v granichnom uslovii”, Fundament. i prikl. matem., 12:4 (2006), 41–52 | MR | Zbl