Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_1_a4, author = {J. Ben Amara and A. A. Vladimirov and A. A. Shkalikov}, title = {Spectral and {Oscillatory} {Properties} of a {Linear} {Pencil} of {Fourth-Order} {Differential} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {55--67}, publisher = {mathdoc}, volume = {94}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a4/} }
TY - JOUR AU - J. Ben Amara AU - A. A. Vladimirov AU - A. A. Shkalikov TI - Spectral and Oscillatory Properties of a Linear Pencil of Fourth-Order Differential Operators JO - Matematičeskie zametki PY - 2013 SP - 55 EP - 67 VL - 94 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a4/ LA - ru ID - MZM_2013_94_1_a4 ER -
%0 Journal Article %A J. Ben Amara %A A. A. Vladimirov %A A. A. Shkalikov %T Spectral and Oscillatory Properties of a Linear Pencil of Fourth-Order Differential Operators %J Matematičeskie zametki %D 2013 %P 55-67 %V 94 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a4/ %G ru %F MZM_2013_94_1_a4
J. Ben Amara; A. A. Vladimirov; A. A. Shkalikov. Spectral and Oscillatory Properties of a Linear Pencil of Fourth-Order Differential Operators. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 55-67. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a4/
[1] G. Heisecke, “Rand-Eigenwertprobleme $N(y)=\lambda P(y)$ bei $\lambda$-abhängingen Randbedingungen”, Mitt. Math. Sem. Giessen, 145 (1980), 1–74 | MR | Zbl
[2] C. I. Gheorghiu, I. S. Pop, “A modified Chebyshev–Tau method for a hydrodynamic stability problem”, Approximation and Optimization, Vol. II, Transilvania Press, Cluj-Napoca, 1997, 119–126 | MR | Zbl
[3] L. Collatz, Eigenwertprobleme und ihre numerische Behandlung, Akad. Verlag., Leipzig, 1945 | MR | Zbl
[4] R. G. Drazin, W. H. Reid, Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl
[5] A. A. Shkalikov, “Kak opredelit operator Orra–Zommerfelda?”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1998, no. 4, 36–43 | MR | Zbl
[6] C. C. Lin, The Theory of Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 1955 | MR | Zbl
[7] A. A. Shkalikov, C. Tretter, “Kamke problems. Properties of the eigenfunctions”, Math. Nachr., 170:1 (1994), 251–275 | DOI | MR | Zbl
[8] A. A. Shkalikov, C. Tretter, “Spectral analysis for linear pencils $N-\lambda P$ of ordinary differential operators”, Math. Nachr., 179:1 (1996), 275–305 | DOI | MR | Zbl
[9] R. Mennicken, M. Moller, Non-Self-Adjoint Boundary Eigenvalue Problems, North-Holland Math. Stud., 192, North-Holland Publ., Amsterdam, 2003 | MR
[10] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M., 1950 | MR | Zbl
[11] W. Leighton, Z. Nehari, “On the oscillation of solutions of self-adjoint linear differential equations of the fourth order”, Trans. Amer. Math. Soc., 89 (1958), 325–377 | DOI | MR
[12] A. Yu. Levin, G. D. Stepanov, “Odnomernye kraevye zadachi s operatorami, ne ponizhayuschimi chisla peremen znaka”, Sib. matem. zhurn., 17:3 (1976), 606—625 | MR | Zbl
[13] D. O. Banks, G. J. Kurowski, “A Prüfer transformation for the equation of vibrating beam subject to axial forces”, J. Differential Equations, 24:1 (1977), 57–74 | DOI | MR | Zbl
[14] U. Elias, “Eigenvalue problems for the equation $Ly=\lambda\rho(x)y=0$”, J. Differential Equations, 29:1 (1978), 28–57 | DOI | MR | Zbl
[15] P. Lancaster, A. Shkalikov, Qiang Ye, “Strongly definitizable linear pencils in Hilbert space”, Integral Equations Operator Theory, 17:3 (1993), 338–360 | DOI | MR | Zbl
[16] A. V. Borovskikh, Yu. V. Pokornyi, “Sistemy Chebysheva–Khaara v teorii razryvnykh yader Kelloga”, UMN, 49:3(297) (1994), 3–42 | MR | Zbl
[17] A. A. Vladimirov, “K ostsillyatsionnoi teorii zadachi Shturma–Liuvillya s singulyarnymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 49:9 (2009), 1609–1621 | Zbl
[18] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983 | MR | Zbl
[19] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[20] M. I. Neiman-zade, A. A. Shkalikov, “Operatory Shredingera s singulyarnymi potentsialami iz prostranstv multiplikatorov”, Matem. zametki, 66:5 (1999), 723–733 | DOI | MR | Zbl
[21] A. A. Vladimirov, “O skhodimosti posledovatelnostei obyknovennykh differentsialnykh operatorov”, Matem. zametki, 75:6 (2004), 941–943 | DOI | MR | Zbl
[22] A. A. Shkalikov, Zh. Ben Amara, “Ostsillyatsionnye teoremy dlya operatora Shturma–Liuvillya s potentsialami-raspredeleniyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2009, no. 3, 43–49 | MR
[23] Yu. V. Pokornyi, Zh. I. Bakhtina, M. B. Zvereva, S. A. Shabrov, Ostsillyatsionnyi metod Shturma v spektralnykh zadachakh, Fizmatlit, M., 2009 | Zbl
[24] Zh. Ben Amara, A. A. Vladimirov, “Ob ostsillyatsii sobstvennykh funktsii zadachi chetvertogo poryadka so spektralnym parametrom v granichnom uslovii”, Fundament. i prikl. matem., 12:4 (2006), 41–52 | MR | Zbl