Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_1_a3, author = {B. B. Bednov and N. P. Strelkova}, title = {On the {Existence} of {Shortest} {Networks} in {Banach} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {46--54}, publisher = {mathdoc}, volume = {94}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a3/} }
B. B. Bednov; N. P. Strelkova. On the Existence of Shortest Networks in Banach Spaces. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a3/
[1] A. L. Garkavi, V. A. Shmatkov, “O tochke Lame i ee obobscheniyakh v normirovannom prostranstve”, Matem. sb., 95(137):2(10) (1974), 272–293 | MR | Zbl
[2] L. Veselý, “A characterization of reflexivity in the terms of the existence of generalized centers”, Extracta Math., 8:2-3 (1993), 125–131 | MR | Zbl
[3] S. V. Konyagin, “Zamechanie o perenormirovke nerefleksivnykh prostranstv i suschestvovanii chebyshevskogo tsentra”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 2, 81–82 | MR | Zbl
[4] P. A. Borodin, “Primer nesuschestvovaniya tochki Shteinera v banakhovom prostranstve”, Matem. zametki, 87:4 (2010), 514–518 | DOI | MR | Zbl
[5] V. Kadets, “Under a suitable renorming every nonreflexive Banach space has a finite subset without a Steiner point”, Mat. Stud., 36:2 (2011), 197–200 | MR
[6] A. O. Ivanov, A. A. Tuzhilin, Minimal Networks. The Steiner Problem and its Generalizations, CRC Press, Boca Raton, FL, 1994 | MR | Zbl
[7] V. Yu. Protasov, Maksimumy i minimumy v geometrii, Izd-vo MTsNMO, M., 2005
[8] L. Ambrosio, P. Tilli, Topics on Analysis in Metric Spaces, Oxford Lecture Ser. Math. Appl., 25, Oxford Univ. Press, Oxford, 2004 | MR | Zbl
[9] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz, Universitetskii kurs, NITs RKhD, M.–Izhevsk, 2009
[10] J. Dixmier, “Sur un théorème de Banach”, Duke Math. J., 15:4 (1948), 1057–1071 | DOI | MR | Zbl