On the Existence of Shortest Networks in Banach Spaces
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 46-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

For dual spaces, and also for $L_1$, it is proved that every system of points in such a space admits a shortest network connecting the points. An example of a Banach space is presented in which, for every $n\ge 3$, there is a system of $n$ points which cannot be connected by a shortest network.
Keywords: Banach space, networks connecting given points, shortest network.
@article{MZM_2013_94_1_a3,
     author = {B. B. Bednov and N. P. Strelkova},
     title = {On the {Existence} of {Shortest} {Networks} in {Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {46--54},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a3/}
}
TY  - JOUR
AU  - B. B. Bednov
AU  - N. P. Strelkova
TI  - On the Existence of Shortest Networks in Banach Spaces
JO  - Matematičeskie zametki
PY  - 2013
SP  - 46
EP  - 54
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a3/
LA  - ru
ID  - MZM_2013_94_1_a3
ER  - 
%0 Journal Article
%A B. B. Bednov
%A N. P. Strelkova
%T On the Existence of Shortest Networks in Banach Spaces
%J Matematičeskie zametki
%D 2013
%P 46-54
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a3/
%G ru
%F MZM_2013_94_1_a3
B. B. Bednov; N. P. Strelkova. On the Existence of Shortest Networks in Banach Spaces. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a3/

[1] A. L. Garkavi, V. A. Shmatkov, “O tochke Lame i ee obobscheniyakh v normirovannom prostranstve”, Matem. sb., 95(137):2(10) (1974), 272–293 | MR | Zbl

[2] L. Veselý, “A characterization of reflexivity in the terms of the existence of generalized centers”, Extracta Math., 8:2-3 (1993), 125–131 | MR | Zbl

[3] S. V. Konyagin, “Zamechanie o perenormirovke nerefleksivnykh prostranstv i suschestvovanii chebyshevskogo tsentra”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 2, 81–82 | MR | Zbl

[4] P. A. Borodin, “Primer nesuschestvovaniya tochki Shteinera v banakhovom prostranstve”, Matem. zametki, 87:4 (2010), 514–518 | DOI | MR | Zbl

[5] V. Kadets, “Under a suitable renorming every nonreflexive Banach space has a finite subset without a Steiner point”, Mat. Stud., 36:2 (2011), 197–200 | MR

[6] A. O. Ivanov, A. A. Tuzhilin, Minimal Networks. The Steiner Problem and its Generalizations, CRC Press, Boca Raton, FL, 1994 | MR | Zbl

[7] V. Yu. Protasov, Maksimumy i minimumy v geometrii, Izd-vo MTsNMO, M., 2005

[8] L. Ambrosio, P. Tilli, Topics on Analysis in Metric Spaces, Oxford Lecture Ser. Math. Appl., 25, Oxford Univ. Press, Oxford, 2004 | MR | Zbl

[9] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz, Universitetskii kurs, NITs RKhD, M.–Izhevsk, 2009

[10] J. Dixmier, “Sur un théorème de Banach”, Duke Math. J., 15:4 (1948), 1057–1071 | DOI | MR | Zbl