On the Existence of Shortest Networks in Banach Spaces
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 46-54
Voir la notice de l'article provenant de la source Math-Net.Ru
For dual spaces, and also for $L_1$, it is proved that every system of points in such a space admits a shortest network connecting the points. An example of a Banach space is presented in which, for every $n\ge 3$, there is a system of $n$ points which cannot be connected by a shortest network.
Keywords:
Banach space, networks connecting given points, shortest network.
@article{MZM_2013_94_1_a3,
author = {B. B. Bednov and N. P. Strelkova},
title = {On the {Existence} of {Shortest} {Networks} in {Banach} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {46--54},
publisher = {mathdoc},
volume = {94},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a3/}
}
B. B. Bednov; N. P. Strelkova. On the Existence of Shortest Networks in Banach Spaces. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a3/