An $L^p$--$L^q$ Analog of Miyachi's theorem for Nilpotent Lie Groups and Sharpness Problems
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to formulate and prove an $L^p$$L^q$ analog of Miyachi's theorem for connected nilpotent Lie groups with noncompact center for $2\leq p,q\leq +\infty$. This allows us to solve the sharpness problem in both Hardy's and Cowling–Price's uncertainty principles. When $G$ is of compact center, we show that the aforementioned uncertainty principles fail to hold. Our results extend those of [1], where $G$ is further assumed to be simply connected, $p=2$, and $q=+\infty$. When $G$ is more generally exponential solvable, such a principle also holds provided that the center of $G$ is not trivial. Representation theory and a localized Plancherel formula play an important role in the proofs.
Keywords: uncertainty principle
Mots-clés : Fourier transform, Plancherel formula.
@article{MZM_2013_94_1_a0,
     author = {F. Abdelmoula and A. Baklouti and D. Lahyani},
     title = {An $L^p$--$L^q$ {Analog} of {Miyachi's} theorem for {Nilpotent} {Lie} {Groups} and {Sharpness} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a0/}
}
TY  - JOUR
AU  - F. Abdelmoula
AU  - A. Baklouti
AU  - D. Lahyani
TI  - An $L^p$--$L^q$ Analog of Miyachi's theorem for Nilpotent Lie Groups and Sharpness Problems
JO  - Matematičeskie zametki
PY  - 2013
SP  - 3
EP  - 21
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a0/
LA  - ru
ID  - MZM_2013_94_1_a0
ER  - 
%0 Journal Article
%A F. Abdelmoula
%A A. Baklouti
%A D. Lahyani
%T An $L^p$--$L^q$ Analog of Miyachi's theorem for Nilpotent Lie Groups and Sharpness Problems
%J Matematičeskie zametki
%D 2013
%P 3-21
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a0/
%G ru
%F MZM_2013_94_1_a0
F. Abdelmoula; A. Baklouti; D. Lahyani. An $L^p$--$L^q$ Analog of Miyachi's theorem for Nilpotent Lie Groups and Sharpness Problems. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a0/

[1] A. Baklouti, S. Thangavelu, “Variant of Miyachi's Theorem for nilpotent Lie Groups”, J. Aust. Math. Soc., 88:1 (2010), 1–17 | DOI | MR | Zbl

[2] G. H. Hardy, “A theorem concerning Fourier transforms”, J. London Math. Soc., 8:3 (1933), 227–231 | DOI | MR | Zbl

[3] M. G. Cowling, J. F. Price, “Generalisations of Heisenberg's inequality”, Harmonic Analysis, Lecture Notes in Math., 992, Springer-Verlag, Berlin, 1983, 443–449 | DOI | MR | Zbl

[4] S. Azouazi, A. Baklouti, M. Elloumi, “Analogues of Miyachi, Cowling–Price and Morgan theorems for compact extensions of $\mathbb{R}^n$”, Int. J. Pure Appl. Math. (to appear)

[5] E. Kaniuith, A. Kumar, “Hardy's theorem for simply connected nilpotent Lie groups”, Math. Proc. Cambridge Philos. Soc., 131:3 (2001), 487–494 | MR | Zbl

[6] A. Baklouti, E. Kaniuth, “On Hardy's uncertainty principle for connected nilpotent Lie groups”, Math. Z., 259:2 (2008), 233–247 | DOI | MR | Zbl

[7] F. Abdelmoula, A. Baklouti, “The $L^p$-$L^q$ analog of Morgan's theorem on exponential solvable Lie groups”, Math. Notes, 88:4 (2010), 464–478 | DOI | Zbl

[8] L. J. Corwin, F. P. Greenleaf, Representations of Nilpotent Lie Groups and their Applications. Part 1. Basic Theory and Examples, Cambridge Stud. Adv. Math., 18, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[9] A. Baklouti, K. Smaoui, J. Ludwig, “Estimate of $L^p$-Fourier transform norm on nilpotent Lie groups”, J. Funct. Anal., 199:2 (2003), 508–520 | DOI | MR | Zbl

[10] M. Duflo, M. Raïs, “Sur l'analyse hamonique sur les groupes de Lie résolubles”, Ann. Sci. École Norm. Sup. (4), 9:1 (1976), 107–144 | MR | Zbl

[11] B. N. Currey, “Explicit orbital parameters and the Plancherel measure for exponential Lie groups”, Pacific J. Math., 219:1 (2005), 97–138 | DOI | MR | Zbl