Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_1_a0, author = {F. Abdelmoula and A. Baklouti and D. Lahyani}, title = {An $L^p$--$L^q$ {Analog} of {Miyachi's} theorem for {Nilpotent} {Lie} {Groups} and {Sharpness} {Problems}}, journal = {Matemati\v{c}eskie zametki}, pages = {3--21}, publisher = {mathdoc}, volume = {94}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a0/} }
TY - JOUR AU - F. Abdelmoula AU - A. Baklouti AU - D. Lahyani TI - An $L^p$--$L^q$ Analog of Miyachi's theorem for Nilpotent Lie Groups and Sharpness Problems JO - Matematičeskie zametki PY - 2013 SP - 3 EP - 21 VL - 94 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a0/ LA - ru ID - MZM_2013_94_1_a0 ER -
%0 Journal Article %A F. Abdelmoula %A A. Baklouti %A D. Lahyani %T An $L^p$--$L^q$ Analog of Miyachi's theorem for Nilpotent Lie Groups and Sharpness Problems %J Matematičeskie zametki %D 2013 %P 3-21 %V 94 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a0/ %G ru %F MZM_2013_94_1_a0
F. Abdelmoula; A. Baklouti; D. Lahyani. An $L^p$--$L^q$ Analog of Miyachi's theorem for Nilpotent Lie Groups and Sharpness Problems. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a0/
[1] A. Baklouti, S. Thangavelu, “Variant of Miyachi's Theorem for nilpotent Lie Groups”, J. Aust. Math. Soc., 88:1 (2010), 1–17 | DOI | MR | Zbl
[2] G. H. Hardy, “A theorem concerning Fourier transforms”, J. London Math. Soc., 8:3 (1933), 227–231 | DOI | MR | Zbl
[3] M. G. Cowling, J. F. Price, “Generalisations of Heisenberg's inequality”, Harmonic Analysis, Lecture Notes in Math., 992, Springer-Verlag, Berlin, 1983, 443–449 | DOI | MR | Zbl
[4] S. Azouazi, A. Baklouti, M. Elloumi, “Analogues of Miyachi, Cowling–Price and Morgan theorems for compact extensions of $\mathbb{R}^n$”, Int. J. Pure Appl. Math. (to appear)
[5] E. Kaniuith, A. Kumar, “Hardy's theorem for simply connected nilpotent Lie groups”, Math. Proc. Cambridge Philos. Soc., 131:3 (2001), 487–494 | MR | Zbl
[6] A. Baklouti, E. Kaniuth, “On Hardy's uncertainty principle for connected nilpotent Lie groups”, Math. Z., 259:2 (2008), 233–247 | DOI | MR | Zbl
[7] F. Abdelmoula, A. Baklouti, “The $L^p$-$L^q$ analog of Morgan's theorem on exponential solvable Lie groups”, Math. Notes, 88:4 (2010), 464–478 | DOI | Zbl
[8] L. J. Corwin, F. P. Greenleaf, Representations of Nilpotent Lie Groups and their Applications. Part 1. Basic Theory and Examples, Cambridge Stud. Adv. Math., 18, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[9] A. Baklouti, K. Smaoui, J. Ludwig, “Estimate of $L^p$-Fourier transform norm on nilpotent Lie groups”, J. Funct. Anal., 199:2 (2003), 508–520 | DOI | MR | Zbl
[10] M. Duflo, M. Raïs, “Sur l'analyse hamonique sur les groupes de Lie résolubles”, Ann. Sci. École Norm. Sup. (4), 9:1 (1976), 107–144 | MR | Zbl
[11] B. N. Currey, “Explicit orbital parameters and the Plancherel measure for exponential Lie groups”, Pacific J. Math., 219:1 (2005), 97–138 | DOI | MR | Zbl