Realization of Cascades on Surfaces with Finitely Many Moduli of Topological Conjugacy
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 902-919.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing cascades on surfaces is developed, which makes it possible to model structurally unstable discrete dynamical systems with finitely many orbits of heteroclinic tangency and preset moduli of topological conjugacy.
Keywords: structurally unstable dynamical system, orbit of heteroclinic tangency, modulus of topological conjugacy, scheme of a diffeomorphism.
Mots-clés : cascade
@article{MZM_2013_93_6_a8,
     author = {T. M. Mitryakova and O. V. Pochinka},
     title = {Realization of {Cascades} on {Surfaces} with {Finitely} {Many} {Moduli} of {Topological} {Conjugacy}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {902--919},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a8/}
}
TY  - JOUR
AU  - T. M. Mitryakova
AU  - O. V. Pochinka
TI  - Realization of Cascades on Surfaces with Finitely Many Moduli of Topological Conjugacy
JO  - Matematičeskie zametki
PY  - 2013
SP  - 902
EP  - 919
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a8/
LA  - ru
ID  - MZM_2013_93_6_a8
ER  - 
%0 Journal Article
%A T. M. Mitryakova
%A O. V. Pochinka
%T Realization of Cascades on Surfaces with Finitely Many Moduli of Topological Conjugacy
%J Matematičeskie zametki
%D 2013
%P 902-919
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a8/
%G ru
%F MZM_2013_93_6_a8
T. M. Mitryakova; O. V. Pochinka. Realization of Cascades on Surfaces with Finitely Many Moduli of Topological Conjugacy. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 902-919. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a8/

[1] A. A. Andponov, L. S. Pontpyagin, “Gpubye sistemy”, DAN SSSP, 14:5 (1937), 247–250 | Zbl

[2] E. A. Leontovich, A. G. Maiep, “O skheme, oppedelyayuschei topologicheskuyu stpuktupu pazbieniya na tpaektopii”, DAN SSSP, 103:4 (1955), 557–560 | MR | Zbl

[3] M. M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical Systems, Academic Press, New York, 1973, 389–419 | MR | Zbl

[4] A. N. Bezdenezhnykh, V. Z. Grines, “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. Chast 1”, Metody kachestvennoi teorii differentsalnykh uravnenii, Izd-vo Gorkovsk. un-ta., Gorkii, 1984, 22–38 | MR | Zbl

[5] A. N. Bezdenezhnykh, V. Z. Grines, “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh. Chast 2”, Metody kachestvennoi teorii differentsalnykh uravnenii, Izd-vo Gorkovsk. un-ta., Gorkii, 1987, 24–31 | MR | Zbl

[6] A. N. Bezdenezhnykh, V. Z. Grines, “Realizatsiya gradientno-podobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh”, Differentsialnye i integralnye uravneniya, Izd-vo Gorkovsk. un-ta., Gorkii, 1985, 33–37 | MR | Zbl

[7] V. Z. Grines, “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Matem. zametki, 54:3 (1993), 3–17 | MR | Zbl

[8] J. Palis, “A differentiable invariant of topological conjugacies and moduli of stability”, Dynamical Systems, Vol. III, Astérisque, 51, Soc. Math. France, Paris, 1978, 335–346 | MR | Zbl

[9] W. de Melo, “Moduli of stability of two-dimensional diffeomorphisms”, Topology, 19:1 (1980), 9–21 | DOI | MR | Zbl

[10] W. de Melo, J. Palis, “Moduli of stability for diffeomorphisms”, Global Theory of Dynamical Systems, Lecture Notes in Math., 819, Springer-Verlag, Berlin, 1980, 318–339 | DOI | MR | Zbl

[11] W. de Melo, S. J. van Strien, “Diffeomorphisms on surfaces with a finite number of moduli”, Ergodic Theory Dynam. Systems, 7:3 (1987), 415–462 | MR | Zbl

[12] T. M. Mitryakova, O. V. Pochinka, “O neobkhodimykh i dostatochnykh usloviyakh topologicheskoi sopryazhennosti diffeomorfizmov poverkhnostei s konechnym chislom orbit geteroklinicheskogo kasaniya”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 270, MAIK, M., 2010, 198–219 | MR | Zbl

[13] T. M. Mitryakova, O. V. Pochinka, “K voprosu o klassifikatsii diffeomorfizmov poverkhnostei s konechnym chislom modulei topologicheskoi sopryazhennosti”, Nelineinaya dinam., 6:1 (2010), 91–105

[14] D. Rolfsen, Knots and Links, Math. Lecture Ser., 7, Publish or Perish, Houston, TX, 1990 | MR | Zbl

[15] C. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Topological classification of gradient-like diffeomorphisms on $3$-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl

[16] Kh. Bonatti, V. Z. Grines, O. V. Pochinka, “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 250, Nauka, M., 2005, 5–53 | MR | Zbl

[17] Ch. Kosnevski, Nachalnyi kurs algebraicheskoi topologii, Sovremennaya matematika. Vvodnye kursy, Mir, M., 1983 | MR | Zbl

[18] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl